【题目】定义,,…,的“倒平均数”为.
(1)若数列前项的“倒平均数”为,求的通项公式;
(2)设数列满足:当为奇数时,,当为偶数时,.若为前项的倒平均数,求;
(3)设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立?若存在,求出最大的实数;若不存在,说明理由.
【答案】(1);(2);(3)存在,
【解析】
(1)根据定义求得数列的前项和.再根据和项与通项关系求出的通项公式.
(2)先根据为偶数和为奇数时,分别求出数列的前项和,再根据定义求出,最后求出.
(3)先化简不等式得对任意恒成立,再根据数列单调性求最小值,最后根据不等式解集推导出存在最大的实数
(1)设数列的前项和为,
由题意,,
所以.
所以,当时,,
而也满足此式.
所以的通项公式为.
(2)设数列的前项和为,则当为偶数时,,
当为奇数时,.
所以,
所以.
(3)假设存在实数,使得当时,对任意恒成立,
则对任意恒成立,
令,因为,
所以数列是递增数列,
所以只要,即,
解得或.
所以存在最大的实数,
使得当时,对任意恒成立.
科目:高中数学 来源: 题型:
【题目】随着计算机的出现,图标被赋予了新的含义,又有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为3部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3、宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,则此点取自图标第三部分的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电子商务平台的管理员随机抽取了1000位上网购物者,并对其年龄(在10岁到69岁之间)进行了调查,统计情况如下表所示.
年龄 | ||||||
人数 | 100 | 150 | 200 | 50 |
已知,,三个年龄段的上网购物的人数依次构成递减的等比数列.
(1)求的值;
(2)若将年龄在内的上网购物者定义为“消费主力军”,其他年龄段内的上网购物者定义为“消费潜力军”.现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,再从这5人中抽取2人,求这2人中至少有一人是消费潜力军的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,过点作直线与抛物线交于,两点,点满足,过作轴的垂线与抛物线交于点,若,则点的横坐标为__________,__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是( )
A. 抽出的100人中,年龄在40~45岁的人数大约为20
B. 抽出的100人中,年龄在35~45岁的人数大约为30
C. 抽出的100人中,年龄在40~50岁的人数大约为40
D. 抽出的100人中,年龄在35~50岁的人数大约为50
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4
(1)求椭圆的方程;
(2)若是椭圆的左顶点,经过左焦点的直线与椭圆交于、两点,求与的面积之差的绝对值的最大值,并求取得最大值时直线的方程.为坐标原点)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点GH,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设常数.在平面直角坐标系xOy中,已知点,直线l:,曲线Γ:(,).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.
(1)用t表示点B到点F的距离;
(2)设,,线段OQ的中点在直线FP上,求△AQP的面积;
(3)设,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与抛物线有一个公共点.
(1)求抛物线方程;
(2)斜率不为0的直线经过抛物线的焦点,交抛物线于两点,.抛物线上是否存在两点,关于直线对称?若存在,求出的斜率的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com