精英家教网 > 高中数学 > 题目详情
9、“m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的
充要
条件.
分析:本题考察的知识点是充要条件的定义,及椭圆的定义,我们分别判断“m>n>0”?“方程mx2+ny2=1表示焦点在y轴上的椭圆”的真假,及“方程mx2+ny2=1表示焦点在y轴上的椭圆”?“m>n>0”的真假,然后根据充要条件的定义,即可得到结论.
解答:解:当“m>n>0”时”方程mx2+ny2=1表示焦点在y轴上的椭圆”成立,
即“m>n>0”?”方程mx2+ny2=1表示焦点在y轴上的椭圆”为真命题,
当“方程mx2+ny2=1表示焦点在y轴上的椭圆”时“m>n>0”也成立
即“方程mx2+ny2=1表示焦点在y轴上的椭圆”?“m>n>0”也为真命题
故“m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的充要条件
故答案为:充要
点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则?=
π
6
5
6
π

②已知O、A、B、C是平面内不同的四点,且
OA
OB
OC
,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足
a
2
n+1
a
2
n
=p
(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为n=
1
12
(4k+8)

(k∈N*).
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足an+12-an2=d(其中d是常数,n∈N﹡),则称数列{an}是“等方差数列”.已知数列{bn}是公差为m的差数列,则m=0是“数列{bn}是等方差数列”的
充要条件
充要条件
条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要条件中的一个)

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足
a
2
n+1
-
a
2
n
=d(其中d是常数,n∈N),则称数列{an}是“等方差数列”.已知数列{bn}是公差为m的差数列,则m=0是“数列{bn}是等方差数列”的
充要条件
充要条件
条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要条件中的一个)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(4,0),N(1,0)若动点P满足
MN
MP
=6|
NP
|

(1)求动点P的轨迹方C的方程;
(2)设Q是曲线C上任意一点,求Q到直线l:x+2y-12=0的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某只股票经历了10个跌停(下跌10%)后需再经过10个涨停(上涨10%)就可以回到原来的净值;
③某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部数学平均分分别是a、b,则这两个级部的数学平均分为
na
m
+
mb
n

④某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从l到800进行编号.已知从497~513这16个数中取得的学生编号是503,则初始在第1小组1~16中随机抽到的学生编号是7.
其中真命题的个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

同步练习册答案