分析:本题考察的知识点是充要条件的定义,及椭圆的定义,我们分别判断“m>n>0”?“方程mx2+ny2=1表示焦点在y轴上的椭圆”的真假,及“方程mx2+ny2=1表示焦点在y轴上的椭圆”?“m>n>0”的真假,然后根据充要条件的定义,即可得到结论.
解答:解:当“m>n>0”时”方程mx2+ny2=1表示焦点在y轴上的椭圆”成立,
即“m>n>0”?”方程mx2+ny2=1表示焦点在y轴上的椭圆”为真命题,
当“方程mx2+ny2=1表示焦点在y轴上的椭圆”时“m>n>0”也成立
即“方程mx2+ny2=1表示焦点在y轴上的椭圆”?“m>n>0”也为真命题
故“m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的充要条件
故答案为:充要
点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.