【题目】已知函数(为常数,=2.71828……是自然对数的底数),曲线在点处的切线与轴平行.
(1)求的值;
(2)求的单调区间;
(3)设,其中是的导函数.证明:对任意>0,<.
【答案】(1);(2)单调递增区间为,单调递减区间为;(3)证明见解析.
【解析】
试题分析:(1)求出函数的导函数,函数在点处的切线与轴平行,说明,则可得;(2)求出函数的定义域,然后让导数等于,求出极值点,借助于导函数在各区间内的符号求函数的单调区间;(3),分别研究的单调性,可得函数的范围,即可证明结论.
试题解析:(1)由,得,,由于曲线在处的切线与轴平行,所以,因此
(2)由(1)得,令 当时, ;当时,.又,所以时,;
时,,因此的单调递增区间为,单调递减区间为.
(3)证明因为,所以,.因此对任意等价于.
由(2)知,
所以,
因此当时,﹥0, 单调递增;当时, ﹤0, 单调递减.
所以的最大值为 故. 设,
因为,所以,﹥0, 单调递增, ﹥,
故时,,即﹥1.所以﹤,
因此对任意, ﹤.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数,且在定义域上单调递减,求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,在多面体中,⊥平面,,且是边长为2的等边三角形,,与平面所成角的正弦值为.
(1)若是线段的中点,证明:⊥面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=x+有如下性质:如果常数t>0,那么该函数在(0, ]上是减函数,在[,+∞)上是增函数.
(1)已知f(x)=,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】5名男生4名女生站成一排,求满足下列条件的排法:
(1)女生都不相邻有多少种排法?
(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?
(3)男甲不在首位,男乙不在末位,有多少种排法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,三条边所对的角分别为A、B,C,向量=(),=(),且满足=.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等比数列,且 =﹣8,求边的值并求△ABC外接圆的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com