精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分13分)

已知函数其中

求曲线在点处的切线方程

)证明: 在区间上恰有个零点

【答案】(1)(2)详见解析

【解析】试题分析:(Ⅰ)当时, ,求出的值可得切点坐标,求出的值可得切线斜率,由点斜式可得曲线在点处的切线方程;(Ⅱ)求出导函数.由 ,得 .根据零点存在定理可得存在唯一的, 使得 在区间上单调递增,在区间上单调递减.可证明,从而可得结论.

试题解析:

所以

因为

所以曲线在点处的切线方程为

,得

因为 ,所以

时,

所以 存在唯一的 使得

在区间上的情况如下:

极大值

所以 在区间上单调递增在区间上单调递减

因为

所以 在区间上恰有2个零点

【方法点晴】本题主要考查利用导数求曲线切线方程以及利用导数研究函数的单调性与极值,属于难题.求曲线切线方程的一般步骤是:(1)求出处的导数,即在点 出的切线斜率(当曲线处的切线与轴平行时,在 处导数不存在,切线方程为);(2)由点斜式求得切线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(导学号:05856312)[选修4-5:不等式选讲]

已知函数f(x)=|xm|-2|x-1|(m∈R).

(Ⅰ)当m=3时,求函数f(x)的最大值;

(Ⅱ)解关于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线在第一象限的交点,且

(1)求椭圆的标准方程;

(2)设为抛物线上的两个动点,且使得线段的中点在直线上,

为定点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】老师在四个不同的盒子里面放了4张不同的扑克牌,分别是红桃,梅花,方片以及黑桃,让明、小红、小张、小李四个人进行猜测:

小明说:第1个盒子里面放的是梅花,第3个盒子里面放的是方片

小红说:第2个盒子里面饭的是梅花,第3个盒子里放的是黑桃

小张说:第4个盒子里面放的是黑桃,第2个盒子里面放的是方片

小李说:第4个盒子里面放的是红桃,第3个盒子里面放的是方片

老师说:“小明、小红、小张、小李,你们都只说对了一半.”则可以推测,第4个盒子里装的是( )

A. 红桃或黑桃 B. 红桃或梅花

C. 黑桃或方片 D. 黑桃或梅花

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥, 平面 分别为的中点,设直线与平面交于点.

1已知平面平面求证: .

2求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在区间(,+∞)上且以2为周期的函数,对k∈Z,用Ik表示区间(2k1,2k1),已知当xI0时,f(x)x2.f(x)Ik上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求不等式的解集;

(2)若对任意,不等式的解集为空集,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数f(0)0x>0

f(x).

(1)求函数f(x)的解析式;

(2)解不等式f(x21)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形 分别是边上的点沿折起并连接成如图的多面体折后

(Ⅰ)求证:

(Ⅱ)若折后直线与平面所成角的正弦值是求证平面平面

查看答案和解析>>

同步练习册答案