精英家教网 > 高中数学 > 题目详情
10.下列有关命题的叙述,其中错误的个数为(  )
①若p∨q为真命题,则p∧q也为真命题
②“x>5”是“x2-4x-5>0”的充分不必要条件
③命题:?x∈R,2x>x2的否定为:?x0∉R,2${\;}^{{x}_{0}}$≤x02
④?x∈R,使得ex=1+x是真命题.
A.1个B.2个C.3个D.4个

分析 ①,若p∨q为真命题,则p、q至少一个为真命题,则p∧q也不一定为真命题;
②,“x>5”⇒“x2-4x-5>0”;“x2-4x-5>0”⇒“x>5或x<-1“;
③,命题:?x∈R,2x>x2的否定为:?x0∈R,2${\;}^{{x}_{0}}$≤x02
④,当x=0,ex=1+x.

解答 解:对于①,若p∨q为真命题,则p、q至少一个为真命题,则p∧q也不一定为真命题,故错;
对于②,“x>5”⇒“x2-4x-5>0”;“x2-4x-5>0”⇒“x>5或x<-1“,故正确;
对于③,命题:?x∈R,2x>x2的否定为:?x0∈R,2${\;}^{{x}_{0}}$≤x02,故错;
对于④,当x=0,ex=1+x,故正确.
故选:B

点评 本题考查了命题真假的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow{b}$,$\overrightarrow{BC}$=-2$\overrightarrow{a}$+8$\overrightarrow{b}$,$\overrightarrow{CD}$=λ($\overrightarrow{a}$-$\overrightarrow{b}$),且A、B、D三点共线,则λ的值为(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某小区内有一条形状如图的沟渠,沟沿是两条平行线段,沟渠宽AB为20厘米,沟渠的直截面ABO为一段抛物线,抛物线顶点为O,对称轴与地面垂直,沟渠深20厘米,沟渠中水深10厘米.
(1)求水面宽为多少厘米;
(2)若要把这条沟渠改挖(不准填土)成直截面为等腰梯形的沟渠,是沟渠的底面与地面平行,则改挖后的沟渠底部宽为多少厘米时,所挖土最少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|y=$\sqrt{2x-{x}^{2}}$},集合B=Z,则A∩B=(  )
A.{1}B.[0,2]C.(0,2)D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=loga(1+x)+loga(3-x)(a>0且a≠1),其中f(1)=2.
(1)求a的值以及f(x)的定义域;
(2)求f(x)在区间[0,$\frac{3}{2}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=7,则|AB|的值为(  )
A.6B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=2px(p>0)的焦点为F,点D(2,y0)在抛物线C上,且|DF|=3,直线y=x-1与抛物线C交于A,B两点,O为坐标原点.
(1)求抛物线C的方程;
(2)求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=x3-2x2+x的单调递减区间为($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《数学统综》有如下记载:“有凹线,取三数,小小大,存三角”.意思是说“在凹(或凸)函数(函数值为正)图象上取三个点,如果在这三点的纵坐标中两个较小数之和大于最大的数,则存在将这三点的纵坐标值作为三边长的三角形”.现已知凹函数f(x)=x2-2x+2,在$[\frac{1}{3},{m^2}-m+2]$上任取三个不同的点(a,f(a)),(b,f(b)),(c,f(c)),均存在以f(a),f(b),f(c)为三边长的三角形,则实数m的取值范围为(  )
A.[0,1]B.$[0,\frac{{\sqrt{2}}}{2})$C.$(0,\frac{{\sqrt{2}}}{2}]$D.$[\frac{{\sqrt{2}}}{2},\sqrt{2}]$

查看答案和解析>>

同步练习册答案