精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的单调区间和零点;

(2)若恒成立,求的取值范围.

【答案】(1)单调递减区间:;单调递增区间:;零点为:(2)

【解析】

1)求导根据导函数正负得到单调区间;令,再结合单调性可知唯一零点为;(2)将不等式转化为图像恒在上方,利用临界状态,即直线与相切的情况,求得相切时;从而可构造出,利用导数求得,由此可得取值范围.

(1)

,解得:

所以函数上单调递减,在上单调递增

单调递减区间为,单调递增区间为

,解得:

所以函数的零点是

(2)画出的大致图像,如图所示

,则的图像恒过点

设函数的图像在点处的切线过点

所以

的图像在处的切线方程为

代入切线方程,得

整理得:

,得

所以上单调递增,在上单调递减

所以是方程的唯一解

所以过点且与的图像相切的直线方程为

,则

时,;当时,

,即上恒成立

即函数的图像恒在其切线的上方

数形结合可知,的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于AB两点.

(1)若直线l的倾斜角为60°,求|AB|的值;

(2)|AB|=9,求线段AB的中点M到准线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距与短轴长相等,椭圆上一点到两焦点距离之差的最大值为4.

(1)求椭圆的标准方程;

(2)若点为椭圆上异于左右顶点的任意一点,过原点的垂线交的延长线于点,求的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆上的动点到一个焦点的最远距离与最近距离分别是的左顶点为轴平行的直线与椭圆交于两点,过两点且分别与直线垂直的直线相交于点.

1)求椭圆的标准方程;

2)证明点在一条定直线上运动,并求出该直线的方程;

3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线垂直,求函数的单调区间;

(2)若对于任意都有成立,试求的取值范围;

(3)记.时,函数在区间上有两个零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年“双十一”全网销售额达亿元,相当于全国人均消费元,同比增长,监测参与“双十一”狂欢大促销的家电商平台有天猫、京东、苏宁易购、网易考拉在内的综合性平台,有拼多多等社交电商平台,有敦煌网、速卖通等出口电商平台.某大学学生社团在本校名大一学生中采用男女分层抽样,分别随机调查了若干个男生和个女生的网购消费情况,制作出男生的频率分布表、直方图(部分)和女生的茎叶图如下:

男生直方图

分组(百元)

男生人数

频率

合计

女生茎叶图

(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).

(2)若网购为全国人均消费的三倍以上称为“剁手党”,估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足元的同学中随机抽取人发放纪念品,则人都是女生的概率为多少?

(3)用频率估计概率,从全市所有高校大一学生中随机调查人,求其中“剁手党”人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一个各个面上均涂有颜色的正方体锯成个同样大小的小正方体,从这些小正方体中任意取两个,这两个都恰是两面涂色的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆,以椭圆的顶点焦点为作相似椭圆

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,且与椭圆仅有一个公共点,试判断的面积是否为定值(为坐标原点)?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中,平面于点,点在棱上,满足.

,求证:平面;

设平面与平面所成的锐二面角的大小为,若,试判断命题的真假,并说明理由.

查看答案和解析>>

同步练习册答案