精英家教网 > 高中数学 > 题目详情
已知
a
=(1,2)
b
=(x,-2)
a
⊥(
a
-
b
)
,则实数x为(  )
分析:根据向量坐标运算的公式,求出向量
a
-
b
的坐标.再根据向量
a
a
-
b
互相垂直,得到它们的数量积等于0,利用两个向量数量积的坐标表达式列方程,解得x的值.
解答:解∵
a
=(1,2) ,
b
=(x,-2)

∴向量
a
-
b
=(1-x,2+2)=(1-x,4)
又∵向量
a
a
-
b
互相垂直,
a
•(
a
-
b
)
=1-x+8=0
∴x=9.
故选B.
点评:本题根据两个向量垂直,求参数m的值,着重考查了向量坐标的线性运算、向量数量积的坐标公式和两个向量垂直的充要条件等知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(1,2)
b
=(-3,2)
,当k为何值时,
(1)k
a
+
b
a
-3
b
垂直?
(2)k
a
+
b
a
-3
b
平行?平行时它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={1,2,3,4,5,6,7,8,9},B={1,2,3},C={3,4,5,6},则A∩(B∪C)=
{1,2,3,4,5,6}
{1,2,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,2)
b
=(-3,2)

(1)求
a
-3
b

(2)当k
a
+
b
a
-3
b
平行时,求实数k的值.它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)对于正整数a,b,存在唯一一对整数q和r,使得a=bq+r,0≤r<b.特别地,当r=0时,称b能整除a,记作b|a,已知A={1,2,3,…,23}.
(Ⅰ)存在q∈A,使得2011=91q+r(0≤r<91),试求q,r的值;
(Ⅱ)求证:不存在这样的函数f:A→{1,2,3},使得对任意的整数x1,x2∈A,若|x1-x2|∈{1,2,3},则f(x1)≠f(x2);
(Ⅲ)若B⊆A,card(B)=12(card(B)指集合B 中的元素的个数),且存在a,b∈B,b<a,b|a,则称B为“和谐集”.求最大的m∈A,使含m的集合A的有12个元素的任意子集为“和谐集”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={1,2,3},B={1,2}.定义集合A、B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则集合A*B的所有子集的个数为
16
16

查看答案和解析>>

同步练习册答案