精英家教网 > 高中数学 > 题目详情

【题目】在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:

成绩/编号

1

2

3

4

5

物理(x)

90

85

74

68

63

数学(y)

130

125

110

95

90

(参考公式: = =
参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学成绩y关于物理成绩x的线性回归方程 = x+ 精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.

【答案】
(1)解:根据表中数据计算 = ×(90+85+74+68+63)=76,

= ×(130+125+110+95+90)=110,

=902+852+742+682+632=29394,

=90×130+85×125+74×110+68×95+63×90=42595,

= = = ≈1.5,

= =110﹣1.5×76=﹣4;

∴x、y的线性回归方程是 =1.5x﹣4,

当x=80时, =1.5×80﹣4=116,

即某位同学的物理成绩为80分,预测他的数学成绩是116


(2)解:抽取的五位学生中成绩高于100分的有3人,

X表示选中的同学中高于100分的人数,可以取1,2,3,

P(X=1)= = ,P(X=2)= =

P(X=3)= =

故X的分布列为:

X

1

2

3

p

X的数学期望值为E(X)=1× +2× +3× =1.8


【解析】(1)根据表中数据计算 ,求出回归系数 ,写出回归方程,利用回归方程计算x=80时 的值即可;(2)抽取的五位学生中成绩高于100分的有3人,X的可以取1,2,3,计算对应的概率值,写出X的分布列,计算数学期望值.
【考点精析】掌握离散型随机变量及其分布列是解答本题的根本,需要知道在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,D为AA1的中点,E为BC的中点.
(1)求证:直线AE∥平面BDC1
(2)若三棱柱 ABC﹣A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1与平面ABC所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),当x∈[0,2]时,f(x)=4(1﹣|x﹣1|),且对于任意实数x∈[2n﹣2,2n+1﹣2](n∈N* , n≥2),都有f(x)= f( ﹣1).若g(x)=f(x)﹣logax有且只有三个零点,则a的取值范围是(
A.[2,10]
B.[ ]
C.(2,10)
D.[2,10)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知长方体ABCD中, 为DC的中点.将△ADM沿AM折起,使得AD⊥BM.
(1)求证:平面ADM⊥平面ABCM;
(2)是否存在满足 的点E,使得二面角E﹣AM﹣D为大小为 .若存在,求出相应的实数t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(2x+ )(x∈[0, ]),若方程f(x)=a恰好有三个根,分别为x1 , x2 , x3(x1<x2<x3),则x1+x2+x3的取值范围是(
A.[
B.[
C.[
D.[

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入m=4,t=3,则输出y=(
A.183
B.62
C.61
D.184

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sinθ.
(Ⅰ)判断直线l与圆C的交点个数;
(Ⅱ)若圆C与直线l交于A,B两点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C= ,△ABC的面积为2 ,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】调查表明:甲种农作物的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x,y,z,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x+y+z的值评定这种农作物的长势等级,若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级,为了了解目前这种农作物长势情况,研究人员随机抽取10块种植地,得到如表中结果:

种植地编号

A1

A2

A3

A4

A5

(x,y,z)

(1,1,2)

(2,1,1)

(2,2,2)

(0,0,1)

(1,2,1)

种植地编号

A6

A7

A8

A9

A10

(x,y,z)

(1,1,2)

(1,1,1)

(1,2,2)

(1,2,1)

(1,1,1)

(Ⅰ)在这10块该农作物的种植地中任取两块地,求这两块地的空气湿度的指标z相同的概率;
(Ⅱ)从长势等级是一级的种植地中任取一块地,其综合指标为A,从长势等级不是一级的种植地中任取一块地,其综合指标为B,记随机变量X=A﹣B,求X的分布列及其数学期望.

查看答案和解析>>

同步练习册答案