精英家教网 > 高中数学 > 题目详情
18.已知F1,F2是双曲线$\frac{x^2}{9}-\frac{y^2}{16}$=1的两个焦点,p为双曲线上一点且∠F1PF2=60°,则${S_{△P{F_1}{F_2}}}$=(  )
A.$16\sqrt{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$9\sqrt{3}$D.$3\sqrt{3}$

分析 由双曲线方程求得a,c的值,由余弦定理结合双曲线的定义求得|PF1||PF2|的值,则三角形面积可求.

解答 解:由双曲线$\frac{x^2}{9}-\frac{y^2}{16}$=1,得a=3,2a=6,
b2=16,c2=a2+b2=25,c=5.
不妨设P在双曲线右支上,则|PF1|-|PF2|=6,
在△F1PF2中,由余弦定理可得:$4{c}^{2}=|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-2|P{F}_{1}||P{F}_{2}|•cos60°$,
则$100=(|P{F}_{1}|-|P{F}_{2}|)^{2}+|P{F}_{1}||P{F}_{2}|$,即100=36+|PF1||PF2|,
得|PF1||PF2|=64.
∴${S_{△P{F_1}{F_2}}}$=$\frac{1}{2}|P{F}_{1}||P{F}_{2}|•sin60°=\frac{1}{2}×64×\frac{\sqrt{3}}{2}=16\sqrt{3}$.
故选:A.

点评 本题考查双曲线的简单性质,考查了余弦定理及双曲线定义的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若正四棱台的上底边长为2,下底边长为8,高为4则它的表面积为(  )
A.50B.100C.248D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义|b-a|为区间(a,b)(a,b∈R,a<b)的长度.则不等式$\frac{3x-4}{{{x^2}+2x}}>\frac{1}{4}$的所有解集区间的长度和为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.阅读如图的程序框图,输出的结果为65.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求以双曲线y2-3x2=12的焦点为顶点,顶点为焦点的椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知p:-4<x-a<4,q:(x-2)(3-x)>0,若q是p的充分条件,则a的取值范围为[-1,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“圆柱与球的组合体”如图所示,则它的三视图是(  )  
 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F在棱CC1上,且CF=2FC1,P是侧面四边形BCC1B1内一点(含边界),若A1P∥平面AEF,则直线A1P与面BCC1B1所成角的正弦值的取值范围是(  )
A.$[\frac{{2\sqrt{5}}}{5},\frac{{5\sqrt{29}}}{29}]$B.$[\frac{{3\sqrt{13}}}{13},\frac{{5\sqrt{29}}}{29}]$C.$[\frac{{3\sqrt{13}}}{13},\frac{{2\sqrt{2}}}{3}]$D.$[\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{2}}}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.三棱柱ABC-A1B1C1中,底面ABC⊥侧面ABB1A1,底面△ABC是边长为2的等边三角形,侧面ABB1A1为菱形且ABAA1=60°,D为A1B1的中点.
(Ⅰ)记平面BCD∩平面A1C1CA=l,在图中作出l,并说明画法(不用说明理由);
(Ⅱ)求直线l与平面B1C1CB所成角的正弦值.

查看答案和解析>>

同步练习册答案