精英家教网 > 高中数学 > 题目详情
1.已知点A(-3,5),B(2,15),直线l:3x-4y+4=0.
(1)求过A点与直线l平行的直线方程;
(2)若P点在直线l上,求|PA|+|PB|的最小值.

分析 (1)设过A点与直线l平行的直线方程为3x-4y+m=0,把点A(-3,5)代入解得m即可得出.
(2)设点A关于直线l的对称点M(x,y),则$\left\{\begin{array}{l}{3×\frac{x-3}{2}-4×\frac{y+5}{2}+4=0}\\{\frac{y-5}{x+3}×\frac{3}{4}=-1}\end{array}\right.$,解得M.连接BM交直线l于点P,则点P即为所求.

解答 解:(1)设过A点与直线l平行的直线方程为3x-4y+m=0,把点A(-3,5)代入,可得-9-20+m=0,解得m=29.
∴过A点与直线l平行的直线方程为3x-4y+m=0.
(2)设点A关于直线l的对称点M(x,y),则$\left\{\begin{array}{l}{3×\frac{x-3}{2}-4×\frac{y+5}{2}+4=0}\\{\frac{y-5}{x+3}×\frac{3}{4}=-1}\end{array}\right.$,解得M(3,-3).
连接BM交直线l于点P,则点P即为所求.
∴|PA|+|PB|的最小值=|BM|=$\sqrt{(3-2)^{2}+(-3-15)^{2}}$=5$\sqrt{13}$.

点评 本题考查了线段的垂直平分线的性质、两点之间的距离公式、相互平行的直线斜率之间的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,要得到函数g(x)=2sinωx的图象,只需将函数f(x)的图象(  )
A.向左平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向右平移$\frac{5π}{12}$个单位长度D.向左平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知递增等差数列{an}中,a1=1,a1,a4,a10成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an•3n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=lnx+x-2的零点x0∈[a,b],且b-a=1,a,b∈N*,则a+b=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l1:ax-y+1=0,l2:x+ay+1=0,a∈R,和两点A(0,1),B(-1,0),给出如下结论:
①不论a为何值时,l1与l2都互相垂直;
②当a变化时,l1与l2分别经过定点A(0,1)和B(-1,0);
③不论a为何值时,l1与l2都关于直线x+y=0对称;
④如果l1与l2交于点M,则|MA|•|MB|的最大值是1.
其中,所有正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{3{x}^{2}-4,x≥4}\\{0,x<0}\end{array}\right.$,则f(f(1))=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{x}{1+x}\sqrt{\frac{1+x}{1-x}}$的奇偶性是(  )
A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(2,4)在抛物线y2=2px上,且抛物线的准线过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,若双曲线的离心率为2,则该双曲线的方程为${x}^{2}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,∠AOP=$\frac{π}{3}$,Q点与P点关于y轴对称,P,Q都为角的终边与单位圆的交点,求:
(1)P点坐标;
(2)∠AOQ的正弦函数值、余弦函数值.

查看答案和解析>>

同步练习册答案