精英家教网 > 高中数学 > 题目详情

【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.
(1)求k的取值范围;
(2)若 =12,其中O为坐标原点,求|MN|.

【答案】
(1)解:由题意可得,直线l的斜率存在,

设过点A(0,1)的直线方程:y=kx+1,即:kx﹣y+1=0.

由已知可得圆C的圆心C的坐标(2,3),半径R=1.

故由 =1,解得:k1= ,k2=

故当 <k< ,过点A(0,1)的直线与圆C:(x﹣2)2+(y﹣3)2=1相交于M,N两点.


(2)解:设M(x1,y1);N(x2,y2),

由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程(x﹣2)2+(y﹣3)2=1,

可得 (1+k2)x2﹣4(k+1)x+7=0,

∴x1+x2= ,x1x2=

∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1

= k2+k +1=

=x1x2+y1y2= =12,解得 k=1,

故直线l的方程为 y=x+1,即 x﹣y+1=0.

圆心C在直线l上,MN长即为圆的直径.

所以|MN|=2.


【解析】(1)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.(2)由题意可得,经过点M、N、A的直线方程为y=kx+1,根据直线和圆相交的弦长公式进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某研究机构对高三学生的记忆力x和判断力y进行统计分析,所得数据如表所示:

x

6

8

10

12

y

2

3

5

6

画出上表数据的散点图如图所示
(其中 =

(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 = x+
(2)试根据(1)求出的线性回归方程,预测记忆力为9的学生的判断力

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+ bsinC﹣a﹣c=0,则角B=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一、高二、高三人数分别是400人、350人、350人.为调査该校学习情况,采用分层抽样的方法从中抽取一个容量为的样本.已知从高一的同学中抽取的同学有8人

(1)求样本容量的值和高二抽取的同学的人数

(2)若从高二抽取的同学中选出2人参加某活动,已知高二被抽取的同学中有2名女生,求至少有1名女同学被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中.直线的参数方程为为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点.以轴非负半轴为极轴)中.圆的极坐标方程是.

(1)写出直线的直角坐标方程,并把圆的极坐标方程化为直角坐标方程;

(2)设圆上的点到直线的距离最小,点到直线的距离最大,求点的横坐标之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市上年度电价为0.80元/千瓦时,年用电量为a千瓦时.本年度计划将电价降到0.55元/千瓦时~0.75元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时)经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为0.2a.试问当地电价最低为多少时,可保证电力部门的收益比上年度至少增加20%.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解小学生近视情况,决定随机从同一个学校二年级到四年级的学生中抽取60名学生检测视力,其中二年级共有学生2400人,三年级共有学生2000人,四年级共有学生1600人,则应从三年级学生中抽取的学生人数为(  )
A.24
B.20
C.16
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的i的值为8,则判断框内实数a的取值范围是 . (写成区间或集合的形式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆中心在原点,焦点在轴上, 分别为上、下焦点,椭圆的离心率为 为椭圆上一点且

(1)若的面积为,求椭圆的标准方程;

(2)若的延长线与椭圆另一交点为,以为直径的圆过点 为椭圆上动点,求的范围.

查看答案和解析>>

同步练习册答案