分析 (1)连结BD,交AC于点M,连结EM.判断△ABM∽△CDM,推出PD∥EM即可证明PD∥平面AEC.
(2)取CD中点F,连接BF,AF,求出E到平面PAC的距离是B到平面PAC的距离,利用VP-ACE=VE-PAC转化求解即可.
解答 解:(1)连结BD,交AC于点M,连结EM.
∵AB∥CD,∴△ABM∽△CDM….(2分)
∴$\frac{BM}{MD}=\frac{AB}{CD}=\frac{1}{2}$,
又PE=2EB,∴$\frac{BM}{MD}=\frac{EB}{PE}=\frac{1}{2}$,∴PD∥EM….(5分)
∵EM?平面AEC,PD?平面AEC,∴PD∥平面AEC.….(6分)
(2)取CD中点F,连接BF,AF,PA⊥平面ABCD,∴PA⊥BF,
又∵AC⊥BF,AC∩PA=A,∴BF⊥平面PAC,$BF=3\sqrt{2}$,
又因为PE=2EB,
所以,E到平面PAC的距离是B到平面PAC的距离的$\frac{2}{3}$,所以$h=\sqrt{2}$…(9分)
${V_{P-ACE}}={V_{E-PAC}}=\frac{1}{3}{S_{△PAC}}•h$=$\frac{1}{3}•\frac{1}{2}•3\sqrt{2}•3•\sqrt{2}=3$….(12分)
注:其它解法酌情给分.
点评 本题考查空间几何体的体积的求法,直线与平面平行的判定定理的应用,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:选择题
A. | ①③ | B. | ① | C. | ②④ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com