精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)的顶点坐标为(1,1),且f(0)=3,
(1)求f(x)的解析式,
(2)x∈[-1,1],y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围,
(3)若f(x)在区间[a,a+1]上单调,求实数a的取值范围.
分析:(1)因为已知二次函数的顶点坐标,故可设二次函数的顶点式f(x)=a(x-1)2+1,代入f(0)=3,即可得a的值,从而得函数解析式;
(2)先将y=f(x)的图象恒在y=2x+2m+1的图象上方问题转化为g(x)=x2-3x+1-m>0在[-1,1]上恒成立问题,从而只需求函数g(x)的最小值即可得m的取值范围;
(3)因为函数f(x)的对称轴为x=1,且二次函数开口向上,故要使函数f(x)=2(x-1)2+1在[a,a+1]单调,只需a+1≤1或a≥1,解得a的范围
解答:解:(1)由已知,设f(x)=a(x-1)2+1,
由f(0)=3,得a=2,
故f(x)=2x2-4x+3
(2)由已知,即2x2-4x+3>2x+2m+1,化简得 x2-3x+1-m>0,
设g(x)=x2-3x+1-m,则只要g(x)min>0,x∈[-1,1]即可
∵g(x)=x2-3x+1-m在[-1,1]上为减函数
∴g(x)min=g(1)=-1-m>0,
∴m<-1.
(3)要使函数f(x)=2(x-1)2+1在[a,a+1]单调,
则a+1≤1或a≥1,
则a≤0或a≥1,
∴实数a的取值范围为a≤0或a≥1,
点评:本题综合考查了待定系数法求二次函数的解析式的方法,二次函数不等式恒成立问题的解法,二次函数的图象和性质,熟知二次函数的图象和性质是解决本题的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案