精英家教网 > 高中数学 > 题目详情

【题目】设函数 .

(1)当时,求函数在点处的切线方程;

(2)若函数有两个零点,试求的取值范围;

(3)证明.

【答案】(1)(2)(3)见解析

【解析】试题分析:

1)求出导数,计算得切线斜率,由点斜式写出直线方程,整理成一般式即可;

2函数有两个零点,首先用导数来研究函数的性质:单调性、极值,然后由零点存在定理进行判断,求出,按分类讨论, 时, 只有一个零点; 时, ,这样易判断的正负,从而得的单调区间和极值,由零点存在定理可判断符合题意;在时, 有两个解,又要按的大小分类研究的正负得的单调性,从而确定零点个数,最后综合可得;

3证明函数不等式,可证,设,利用导数求出的最大值,只要最大值小于等于0,即证.

试题解析:

(1)函数的定义域是 .

时, .

所以函数在点处的切线方程为.

.

(2)函数的定义域为,由已知得.

①当时,函数只有一个零点;

②当,因为

时, ;当时, .

所以函数上单调递减,在上单调递增.

因为,所以 所以,所以

,显然

所以 .

由零点存在性定理及函数的单调性知,函数有两个零点.

③当时,由,得,或.

,则.

变化时, 变化情况如下表:

注意到,所以函数至多有一个零点,不符合题意.

,则 单调递增,函数至多有一个零点,不符合题意.

,则.

变化时, 变化情况如下表:

注意到当 时, ,所以函数至多有一个零点,不符合题意.

综上, 的取值范围是.

(3)证明: .

,其定义域为,则证明即可.

因为,取,则,且.

又因为,所以函数上单增.

所以有唯一的实根,且.

时, ;当时, .

所以函数的最小值为.

所以.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数为常数),为自然对数的底数.

(1)当时,求实数的取值范围;

(2)当时,求使得成立的最小正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为 的中点, 为线段上的动点,过点 的平面截该正方体所得的截面为,则下列命题正确的是__________(写出所有正确命题的编号).

①当时, 为四边形;②当时, 为等腰梯形;

③当时, 的交点满足

④当时, 为五边形;

⑤当时, 的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,以为对角线作正方形,记直线轴的交点为,问两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的方程为.以坐标原点为极点, 轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出曲线的参数方程和曲线的直角坐标方程;

(2)设点在曲线上,点在曲线上,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=a﹣bcos(2x+ )(b>0)的最大值为3,最小值为﹣1.
(1)求a,b的值;
(2)当求x∈[ π]时,函数g(x)=4asin(bx﹣ )的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆及点

(1)在圆上,求线段的长及直线的斜率;

(2)若为圆上任一点,求的最大值和最小值;

(3)若实数满足,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为,两天是否下雨互不影响,若两天都下雨的概率为

(1)求及基地的预期收益;

(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为万元,有雨时收益为万元,且额外聘请工人的成本为元,问该基地是否应该额外聘请工人,请说明理由.

查看答案和解析>>

同步练习册答案