精英家教网 > 高中数学 > 题目详情
20.直线$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=-3\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数)和圆x2+y2=16交于A,B两点,则AB的中点坐标为(  )
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.(-$\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$)

分析 把直线的参数方程化为普通方程后代入圆x2+y2=16化简可得x2+3x-1=0,可得x1+x2=-3,即AB的中点的横坐标为-$\frac{3}{2}$,代入直线的方程求得AB的中点的纵坐标.

解答 解:直线$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=-3\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数)即y=-$\sqrt{3}x$-2$\sqrt{3}$
代入圆x2+y2=16化简可得x2+3x-1=0,
∴x1+x2=-3,即AB的中点的横坐标为-$\frac{3}{2}$,
∴AB的中点的纵坐标为-$\frac{\sqrt{3}}{2}$,
故AB的中点坐标为 (-$\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$),
故选D.

点评 本题考查把参数方程化为普通方程的方法,一元二次方程根与系数的关系,线段的中点公式的应用,求得x1+x2=-3,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.满足条件|z-i|+|z+i|=4的复数z在复平面上对应点的轨迹是(  )
A.一条直线B.两条直线C.D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,点P(1,$\frac{\sqrt{2}}{2}$)在椭圆E上,直线l过椭圆的右焦点F且与椭圆相交于A,B两点.
(1)求E的方程;
(2)在x轴上是否存在定点M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值?若存在,求出定点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的右焦点为(2,0).则此双曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U={1,2,3,4},A={1,2},则满足A⊆B的集合B个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=-x3+ax2-x-2在(-∞,+∞)上是单调函数,则实数a的取值范围是(  )
A.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)B.(-$\sqrt{3}$,$\sqrt{3}$)C.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)D.[-$\sqrt{3}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在复平面xOy内,若A(2,-1),B(0,3),则?OACB中,点C对应的复数为(  )
A.2+2iB.2-2iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)在点x0附近有定义,且有f(x0+△x)-f(x0)=a△x+b(△x)2,其中a,b为常数,则(  )
A.f'(x)=aB.f'(x)=bC.f'(x0)=aD.f'(x0)=b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)满足f(2x-1)=x+1,则f(3)等于(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案