精英家教网 > 高中数学 > 题目详情

【题目】袋中装有3个白球,4个黑球,从中任取3个球,则

①恰有1个白球和全是白球;

②至少有1个白球和全是黑球;

③至少有1个白球和至少有2个白球;

④至少有1个白球和至少有1个黑球.

在上述事件中,是互斥事件但不是对立事件的为(

A.B.C.D.

【答案】B

【解析】

根据互斥事件和对立事件的定义进行判断即可.

表示白球,表示黑球,从袋中任取3个球,共包括4个基本事件

分别为

对①,事件“恰有1个白球”包含的基本事件为:,事件“全是白球”包含是基本事件为:,由互斥事件和对立事件的定义可知,事件“恰有1个白球”和“全是白球”互为对立事件,但不是对立事件;

对②,事件“至少有1个白球”包含的基本事件为:,事件“全是黑球”包含的基本事件为:,由互斥事件和对立事件的定义可知,事件“至少有1个白球”和“全是黑球”互为对立事件,也是对立事件;

对③,事件“至少有1个白球”包含的基本事件为:,事件“至少有2个白球”包含的基本事件为:,由互斥事件和对立事件的定义可知,事件“至少有1个白球”和“至少有2个白球”,既不是互斥事件也不是对立事件;

对④,事件“至少有1个白球”包含的基本事件为:,事件“至少有1个黑球”包含的基本事件为:,由互斥事件和对立事件的定义可知,事件“至少有1个白球”和“至少有1个黑球”,既不是互斥事件也不是对立事件;

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017514日至15日,一带一路国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如下图所示,已知乙品牌产品使用寿命小于200小时的概率估计值为.

(1)的值;

(2)估计甲品牌产品寿命小于200小时的概率;

(3)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是乙品牌的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求曲线在点处的切线方程;

)当时,求证:上为增函数;

)若在区间上有且只有一个极值点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为

1)求侧面与底面所成的二面角的大小;

2)若的中点,求异面直线所成角的正切值;

3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的单调增区间;

(2)令.

①当时,若函数恰有两个不同的零点,求的值;

②当时,若的解集为,且中有且仅有一个整数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若上单调递减,求的取值范围;

(2)当时,判断关于的方程的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区为丰富居民节日活动,组织了“迎新春”象棋大赛,已知报名的选手情况统计如下表:

组别

总计

中年组

91

老年组

16

已知中年组女性选手人数是仅比老年组女性选手人数多2人,若对中年组和老年组分别利用分层抽样的方法抽取部分报名者参加比赛,已知老年组抽取了5人,其中女性3人,中年组抽取了7人.

(1)求表格中的数据

(2)若从选出的中年组的选手中随机抽取两名进行比赛,求至少有一名女性选手的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来全国各一、二线城市打击投机购房,陆续出台了住房限购令.某市为了进一步了解已购房民众对市政府出台楼市限购令的认同情况,随机抽取了一小区住户进行调查,各户人均月收入(单位:千元)的频数分布及赞成楼市限购令的户数如下表:

人均月收入

频数

6

10

13

11

8

2

赞成户数

5

9

12

9

4

1

若将小区人均月收入不低于7.5千元的住户称为“高收入户”,人均月收入低于7.5千元的住户称为“非高收入户”

非高收入户

高收入户

总计

赞成

不赞成

总计

(Ⅰ)求“非高收入户”在本次抽样调杳中的所占比例;

(Ⅱ)现从月收入在的住户中随机抽取两户,求所抽取的两户都赞成楼市限购令的概率;

)根据已知条件完成如图所给的列联表,并说明能否在犯错误的概率不超过0.005的前提下认为“收入的高低”与“赞成楼市限购令”有关.

附:临界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足:对任意的实数存在非零常数都有成立.

(1)若函数,求实数的值;

(2)当 求函数在闭区间上的值域;

(3)设函数的值域为,证明:函数为周期函数.

查看答案和解析>>

同步练习册答案