精英家教网 > 高中数学 > 题目详情

已知函数f(x)的导数f'(x)=(x+1)2(x-1)(x-2),则函数f(x)的极值点的个数为


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
B
分析:由极值的定义知,函数在某点处有极值,则此处导数必为零,若导数为0时,此点左右两边的导数符号可能相同,故不一定是极值,由此可以得出结论,极值点处导数比较0,导数为0处函数值不一定是极值.
解答:对于f(x),函数f(x)的导数f'(x)=(x+1)2(x-1)(x-2),
其在点x=-1左右两边的导数符号相同
不能推出f(x)在x=-1取极值,
在点x=1或x=2左右两边的导数符号相异,
推出f(x)在x=1或x=2取极值,
故选B.
点评:本题的考点是函数取得极值的条件,考查极值取到的条件,即对极值定义的正确理解.对概念的学习一定要掌握住其规范的逻辑结构,理顺其关系
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知函数f(x)的导函数f′(x)=2x-5,且f(0)的值为整数,当x∈(n,n+1](n∈N*)时,f(x)的值为整数的个数有且只有1个,则n=
2

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知函数f(x)的导数f″(x)满足0<f′(x)<1,常数a为方程f(x)=x的实数根.
(Ⅰ)若函数f(x)的定义域为M,对任意[a,b]⊆M,存在x0∈[a,b],使等式f(b)-f(a)=(b-a)f″(x0)成立,求证:方程f(x)=x存在唯一的实数根a;
(Ⅱ) 求证:当x>a时,总有f(x)<x成立;
(Ⅲ)对任意x1、x2,若满足|x1-a|<2,|x2-a|<2,求证:|f(x1)-f(x2)|<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+lnx,则f(1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数f′(x)的图象如图所示,那么(  )

查看答案和解析>>

同步练习册答案