精英家教网 > 高中数学 > 题目详情
18.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}$+$\frac{5}{n}$的最小值为(  )
A.$1+\frac{{\sqrt{5}}}{3}$B.$\frac{7}{4}$C.2D.$\frac{11}{4}$

分析 由正项等比数列通项公式结合已知条件求出q=2,再由$\sqrt{{a_m}{a_n}}=4{a_1}$,求出m+n=6,由此利用均值定理能求出结果.

解答 解:∵正项等比数列{an}满足:a7=a6+2a5
∴${a_1}{q^6}={a_1}{q^5}+2{a_1}{q^4}$,
整理,得q2-q-2=0,又q>0,解得,q=2,
∵存在两项am,an使得$\sqrt{{a_m}{a_n}}=4{a_1}$,
∴${a_1}^2{q^{m+n-2}}=16{a_1}^2$,
整理,得2m+n-2=16,即m+n=6,
∴$\frac{1}{m}+\frac{5}{n}=\frac{1}{6}(m+n)(\frac{1}{m}+\frac{5}{n})=\frac{1}{6}(6+\frac{n}{m}+\frac{5m}{n})≥1+\frac{{\sqrt{5}}}{3}$,
当且仅当$\frac{n}{m}$=$\frac{5m}{n}$取等号,但此时m,n∉N*.又m+n=6,
所以只有当m=2,n=4时,取得最小值是$\frac{7}{4}$.
故选:B.

点评 本题考查代数式的最小值的求法,是中档题,解题时要认真审题,注意正项等比数列的性质和均值定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.求函数y=(log${\;}_{\frac{1}{2}}$x)2-4log${\;}_{\frac{1}{2}}$x在区间[$\frac{1}{8}$,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设奇函数f(x)在(0,+∞)上为单调递增函数,且f(2)=0,则不等式$\frac{{f({-x})-f(x)}}{x}≥0$的解集(  )
A.[-2,0]∪[2,+∞)B.(-∞,-2]∪(0,2]C.(-∞,-2]∪[2,+∞)D.[-2,0)∪(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥A-BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,BC=2,M,D分别为AB1,CC1的中点.
(Ⅰ)求证:BD⊥AB1
(Ⅱ)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知全集U=R,集合A={x|x∈R,x2≠1},B={y|ay-1=0},若B⊆∁UA,则a的集合为{-1,0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数y=f(x)的定义域为D,如果存在非零常数T,对于任意x∈D,都有f(x+T)=T•f(x),则称函数y=f(x)是“似周期函数”,非零常数T为函数y=f(x)的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”y=f(x)的“似周期”为-1,那么它是周期为2的周期函数;②函数f(x)=x是“似周期函数”; ③函数f(x)=2-x是“似周期函数”; ④如果函数f(x)=cosωx是“似周期函数”,那么“ω=kπ,k∈Z”.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x=$\frac{π}{6}$是函数f(x)=(asinx+cosx)cosx-$\frac{1}{2}$图象的一条对称轴.
(1)求函数f(x)的单调增区间;
(2)作出函数f(x)在x∈[0,π]上的图象简图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=log2x+x-k(k∈N)在区间(2,3)上只有一个零点,则k=(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-2x-3≥0},B={x|log2(x-1)<2},则(∁RA)∩B=(  )
A.(1,3)B.(-1,3)C.(3,5)D.(-1,5)

查看答案和解析>>

同步练习册答案