精英家教网 > 高中数学 > 题目详情
已知圆x2+y2=25上的两个定点A(0,5),B(3,4)和一个动点D.求以AB、AD为两邻边的平行四边形ABCD的顶点C的轨迹方程.
分析:由AB、AD为两邻边的平行四边形ABCD,故对角线互相平分,从而可得坐标之间的关系,再利用D在圆x2+y2=25上,可求轨迹方程.
解答:解:设D(x1,y1),C(x,y),
∵A(0,5),B(3,4)
x1+3
2
=
x
2
y1+4
2
=
y+5
2

∴x1=x-3,y1=y+1
∵D在圆x2+y2=25上
∴(x-3)2+(y+1)2=25
点评:本题以圆为载体,考查轨迹问题,考查代入法求轨迹方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆x2+y2=2,直线l与圆O相切于第一象限,切点为C,并且与坐标轴相交于点A、B,则当线段AB最小时,则直线AB方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0过坐标原点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0过坐标原点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆x2+y2=2,直线l与圆O相切于第一象限,切点为C,并且与坐标轴相交于点A、B,则当线段AB最小时,则直线AB方程为(  )
A.x+y=2B.2x+y=
10
C.
2
x+y=
6
D.3x+y=2
5

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市闵行区七宝中学高三(下)摸底数学试卷(解析版) 题型:选择题

已知圆x2+y2=2,直线l与圆O相切于第一象限,切点为C,并且与坐标轴相交于点A、B,则当线段AB最小时,则直线AB方程为( )
A.x+y=2
B.
C.
D.

查看答案和解析>>

同步练习册答案