精英家教网 > 高中数学 > 题目详情
(2012•江西模拟)设函数f(x)=x-sinx,数列{an}满足0<a1<1,an+1=f(an).
(1)证明:函数f(x)在(0,1)是增函数;
(2)求证:0≤an+1<an<1;
(3)若a1=
2
2
,求证:an
1
2n
(n≥2,n∈N*).
分析:(1)由于x∈(0,1)时,f'(x)=1-cosx>0恒成立,可得函数f(x)在(0,1)是增函数.
(2)用数学归纳法证明0≤an+1<an<1成立.
(3)先用导数判断函数的单调性,并利用单调性证明 an+1
an2
2
,再证明a1=
2
2
 时,an
1
2n
,由此即可证得
结论.
解答:证明:(1)∵x∈(0,1)时,∴f'(x)=1-cosx>0恒成立,
∴函数f(x)在(0,1)是增函数.…(3分)
(2)∵a2=f(a1)=a1-sina1,∴a2-a1=-sina1
∵0<a1<1,∴a2a1∴six<x 恒成立.…(5分)
1当n=1时,0<a1<a2<12 命题成立.
3假设当n=k时命题成立,即0≤ak+1<ak<14,
∵0=f(0)<f(x)<f(1)=1-sin1<1恒成立,…(8分)
∴f(0)<f(ak+1)<f(ak)<f(1),即 0≤ak+2<ak+1<1-sin1<1,
故当 n=k+1时,命题成立.
根据①②可知对于任意n∈N*命题0≤an+1<an<1均成立;
(3)证明:先证明 an+1
an2
2
,即证 an+1-
an2
2
=an-sinan-
an2
2
<0,an∈(0,1).
令∅(x)=x sinx-
x2
2
,x∈(0,1),则∅′(x)=-x+1-cosx.
再令g(x)=∅′(x),则g′(x)=-1+sinx≤0,故g(x)=∅′(x)在(0,1)上是减函数,
故∅′(x)<∅′(0)=0,故∅(x)在(0,1)上是减函数,故∅(x)<∅(0)=0 恒成立.
再由an∈(0,1),∅(an)<0,即 an-sinan-
an2
2
<0,故有 an+1
an2
2

再证明a1=
2
2
 时,an
1
2n

an+1
an2
2
 可得
an+1
an
an
2
. 再由an<an-1<an-2<…<a2<a1
当n≥2时,an=a1
a2
a1
a3
a2
an
an-1
<a1
a2
2
a3
2
an
2
<a1
a1
2
a1
2
a1
2
 
=
a1n
2n-1
=
(
2
2
)
n
2n-1
1
2
2n-1
=
1
2n

即 an
1
2n
. …(14分)
点评:本题主要考查数列与不等式的综合,数列与函数的综合,用放缩法、数学归纳法证明不等式,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,面SAB⊥面ABC,则棱锥S-ABC的体积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,将函数f(x)向左平移
π
6
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐进线的交点分别为B、C.若
AB
=
1
2
BC
,则双曲线的离心率是
5
5

查看答案和解析>>

同步练习册答案