【题目】已知抛物线上一点到其焦点的距离为2.
(1)求抛物线的方程;
(2)若直线与圆切于点,与抛物线切于点,求的面积.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为实数集R,及整数k、T;
(1)若函数f(x)=2xsin(πx),证明f(x+2)=4f(x);
(2)若f(x+T)=kf(x),且f(x)=axφ(x)(其中a为正的常数),试证明:函数φ(x)为周期函数;
(3)若f(x+6)= f(x),且当x∈[﹣3,3]时,f(x)= (x2﹣9),记Sn=f(2)+f(6)+f(10)+…+f(4n﹣2),n∈N+ , 求使得S1、S2、S3、…、Sn小于1000都成立的最大整数n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足f(1)=1,且对任意的x∈R,都有f′(x)< ,则不等式f(log2x)> 的解集为( )
A.(1,+∞)
B.(0,1)
C.(0,2)
D.(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线x2=2py(p>0)的顶点到焦点的距离为1,过点P(0,p)作直线与抛物线交于A(x1 , y1),
B(x2 , y2)两点,其中x1>x2 .
(1)若直线AB的斜率为 ,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程;
(2)若 =λ ,是否存在异于点P的点Q,使得对任意λ,都有 ⊥( ﹣λ ),若存在,求Q点坐标;不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为为曲线上的动点,点在线段上,且满足.
(1)求点的轨迹的直角坐标方程;
(2)直线的参数方程是(为参数),其中. 与交于点,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用表示不超过的最大整数,如.
下面关于函数说法正确的序号是____________.(写上序号)
①当时,;
②函数的值域是;
③函数与函数的图像有4个交点;
④方程根的个数为7个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:ρsin2θ﹣6cosθ=0,直线l的参数方程为: (t为参数),l与C交于P1 , P2两点.
(1)求曲线C的直角坐标方程及l的普通方程;
(2)已知P0(3,0),求||P0P1|﹣|P0P2||的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com