精英家教网 > 高中数学 > 题目详情

【题目】为了解本届高二学生对文理科的选择与性别是否有关,现随机从高二的全体学生中抽取了若干名学生,据统计,男生35人,理科生40人,理科男生30人,文科女生15人。

(1)完成如下2×2列联表,判断是否有99.9%的把握认为本届高二学生“对文理科的选择与性别有关”?

男生

女生

合计

文科

理科

合计

(2)已采用分层抽样的方式从样本的所有女生中抽取了5人,现从这5人中随机抽取2人参加座谈会,求抽到的2人恰好一文一理的概率。

0.15

0.10

0.05

0.01

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(参考公式,其中为样本容量)

【答案】(1)见解析;(2)

【解析】

1)把数据填入列联表,计算可得结论;

2)抽取的5人中,文科女3人,理科女2人, 5人编号后用列举法列出任取2人的所有基本事件,并计算出抽到的2人恰好一文一理的事件数,然后由古典概型概率公式计算概率.

(1)列联表如下表:

男生

女生

合计

文科

5

15

20

理科

30

10

40

合计

35

25

60

.所以有99.9%的把握认为二者有关;

(2)由题意知:抽取的5人中,文科女3人,理科女2人,分别设为

随机抽取2人,则共有: 10种情况

其中,有6种情况符合题意,所以. .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区某长产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码

1

2

3

4

5

6

年产量(万吨)

6.6

6.7

7

7.1

7.2

7.4

(1)根据表中数据,建立关于的线性回归方程

(2)若近几年该农产品每千克的价格(单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.

①根据(1)中所建立的回归方程预测该地区2018()年该农产品的产量;

②当)为何值时,销售额最大?

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秸秆还田是当今世界上普通重视的一项培肥地力的增产措施,在杜绝了秸秆焚烧所造成的大气污染的同时还有增肥增产作用.某农机户为了达到在收割的同时让秸秆还田,花元购买了一台新型联合收割机,每年用于收割可以收入万元(已减去所用柴油费);该收割机每年都要定期进行维修保养,第一年由厂方免费维修保养,第二年及以后由该农机户付费维修保养,所付费用(元)与使用年数的关系为:,已知第二年付费元,第五年付费元.

(1)试求出该农机户用于维修保养的费用(元)与使用年数的函数关系;

(2)这台收割机使用多少年,可使平均收益最大?(收益=收入-维修保养费用-购买机械费用)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从集合的所有非空子集中,等可能地取出个.

(1)若,求所取子集的元素既有奇数又有偶数的概率;

(2)若,记所取子集的元素个数之差为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表为年至年某百货零售企业的线下销售额(单位:万元),其中年份代码年份

年份代码

线下销售额

(1)已知具有线性相关关系,求关于的线性回归方程,并预测年该百货零售企业的线下销售额;

(2)随着网络购物的飞速发展,有不少顾客对该百货零售企业的线下销售额持续增长表示怀疑,某调查平台为了解顾客对该百货零售企业的线下销售额持续增长的看法,随机调查了位男顾客、位女顾客(每位顾客从“持乐观态度”和“持不乐观态度”中任选一种),其中对该百货零售企业的线下销售额持续增长持乐观态度的男顾客有人、女顾客有人,能否在犯错误的概率不超过的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关?

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上的最大值为2.

(1)求函数的解析式,并求它的对称中心的坐标;

(2)先将函数保持横坐标不变,纵坐标变为原来的)倍,再将图象向左平移)个单位,得到的函数为偶函数.若对任意的,总存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为x3y+30

(Ⅰ)若直线l1ly轴上的截距相等,且l1的倾斜角是l的倾斜角的两倍,求直线l1的一般式方程;

(Ⅱ)若直线l2过点(2),且l2l垂直求直线l2的斜截式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在国庆周年庆典活动中,东城区教育系统近名师生参与了国庆中心区合唱、方阵群众游行、联欢晚会及万只气球保障等多项重点任务.设是参与国庆中心区合唱的学校是参与27方阵群众游行的学校是参与国庆联欢晚会的学校.请用上述集合之间的运算来表示:①既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为_____;②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积(m2).

(1)求关于的函数关系式;

(2)求的最大值.

查看答案和解析>>

同步练习册答案