精英家教网 > 高中数学 > 题目详情

设函数
(Ⅰ)若解不等式
(Ⅱ)如果,,求实数的取值范围。

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)当a=-1时,f(x)=︱x-1︳+︱x+1︳.
由f(x)≥3得︱x-1︳+︱x+1|≥3     
(ⅰ)x≤-1时,不等式化为1-x-1-x≥3 即-2x≥3
不等式组的解集为
综上得,的解集为
(Ⅱ)若,不满足题设条件


所以的充要条件是,从而的取值范围为
考点:本题考查了不等式的解法
点评:在解答含有绝对值不等式问题时,要注意分段讨论来取绝对值符号的及利用绝对值的几何意义来求含有多个绝对值的最值问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1="3," x2=4.
(1)求函数f(x)的解析式;
(2)设,解关于x的不等式;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求在点处的切线方程;
(2)求在区间的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f (x)的定义域为M,具有性质P:对任意xM,都有f (x)+f (x+2)≤2f (x+1).
(1)若M为实数集R,是否存在函数f (x)=ax (a>0且a≠1,x∈R) 具有性质P,并说明理由;
(2)若M为自然数集N,并满足对任意xM,都有f (x)∈N. 记d(x)=f (x+1)-f (x).
(ⅰ) 求证:对任意xM,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求证:存在整数0≤cd(1)及无穷多个正整数n,满足d(n)=c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点M处的切线恰好与直线垂直。
(1)求实数的值;
(2)若函数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x|x-2|.
(1)写出f(x)的单调区间;     (2)解不等式f(x)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数满足(+2)=(2-),且方程的两实根的平方和为10,的图象过点(0,3),
⑴求()的解析式.
⑵求上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数是减函数,且是奇函数,若,求实数的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数是定义域为的奇函数,(1)求实数的值;(2)证明上的单调函数;(3)若对于任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案