精英家教网 > 高中数学 > 题目详情

【题目】如图,在长方体ABCD﹣A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中点.
(1)求证:A1C∥平面BED;
(2)求二面角E﹣BD﹣A的正切值.

【答案】
(1)证明:如图建立空间直角坐标系,取BD的中点O,连接EO.

A1(0,0,4),C(3,3,0),E(0,0,2),O( ,0)

=(3,3,﹣4), =( ,﹣2),

=2 ,∴A1C∥EO.

∵EO平面BED,A1C平面BED,

∴A1C∥平面BED


(2)解:由于AE⊥平面ABCD,

=(0,0,2)就是平面ABCD的法向量.

B(3,0,0),D(0,3,0),

=(﹣3,0,2), =(﹣3,3,0),

设平面EBD的法向量为 =(x,y,z).

令z=3,则 =(2,2,3).

cos =

∴二面角E﹣BD﹣A的正切值为


【解析】(1)建立空间直角坐标系,先求得相关点的坐标,从而得到 =(3,3,﹣4), =( ,﹣2),然后由共线向量定理证明即可.(2)分别求得二个半平面的一个法向量即可,由于AE⊥平面ABCD,则 =(0,0,2)就是平面ABCD的法向量.B(3,0,0),D(0,3,0),再求得平面EBD的一个法向量为,用向量的夹角公式求解.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知α为锐角,且 ,函数 ,数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)求证:数列{an+1}为等比数列;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列{an}的前n项和为Sn , 且满足an2﹣2Sn=2﹣an(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则f(f(﹣1))= , |f(x)| 的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ (m∈R)在区间[1,e]取得最小值4,则m=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的定义域.

)判断在定义域上的单调性,并用单调性定义证明你的结论.

)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C在直角坐标系xOy下的参数方程为 (θ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(I)求曲线C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρcos(θ﹣ )=3 ,射线OT:θ= (ρ>0)与曲线C交于A点,与直线l交于B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知cos2A+ =2cosA.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

同步练习册答案