精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体的棱长为,点为棱的中点.

1)求证:平面

2)求点到平面的距离.

【答案】1)证明见解析;(2.

【解析】

1)取的中点,连接,证明出平面平面,利用面面平行的性质可证明出平面

2)取的中点,连接,证明出四点共面,利用等体积法计算出点到平面的距离,即为所求.

1)取的中点,连接

在正方体中,

分别为的中点,

四边形为平行四边形,

平面平面平面

分别为的中点,

平面平面平面

平面平面

平面平面

2)取的中点,连接

分别为的中点,

在正方体中,

所以,四边形是平行四边形,

四点共面,

的面积为

平面三棱锥的体积为.

由勾股定理得.

中,

的面积为

设点到平面的距离为,由

,解得.

因此,点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义在[-11]上的奇函数且,若ab∈[-11],a+b0,有成立.

1)判断函数在[-11]上是增函数还是减函数,并加以证明.

2)解不等式.

3)若对所有恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.

某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线与曲线分别交于异于极点O的四点ABCD.

1)若曲线关于对称,求的值,并求的参数方程;

2)若 |,当时,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥中底面为直角梯形,,侧面为正三角形且平面底面分别为的中点.

1)证明:平面

2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到:任画…条线段,然后把它分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了由4条小线段构成的折线,称为“一次构造”;用同样的方法把每一条小线段重复上述步骤,得到由16条更小的线段构成的折线,称为“二次构造”;…;如此进行“n次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度大于初始线段的100倍,则至少需要构造的次数是( )(取

A.16B.17C.24D.25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,直线被椭圆截得的线段长为.

(1)求椭圆的标准方程;

(2)过椭圆的右顶点作互相垂直的两条直线分别交椭圆两点(点不同于椭圆的右顶点),证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到点的距离比到直线的距离小,设点的轨迹为曲线.

1)求曲线的方程;

2)过曲线上一点)作两条直线与曲线分别交于不同的两点,若直线的斜率分别为,且.证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱FE分别是的中点.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案