【题目】如图,正方体的棱长为,点、为棱、的中点.
(1)求证:平面;
(2)求点到平面的距离.
【答案】(1)证明见解析;(2).
【解析】
(1)取的中点,连接、,证明出平面平面,利用面面平行的性质可证明出平面;
(2)取的中点,连接、、、、,证明出、、、四点共面,利用等体积法计算出点到平面的距离,即为所求.
(1)取的中点,连接、,
在正方体中,且,
、分别为、的中点,且,
四边形为平行四边形,,
平面,平面,平面,
、分别为、的中点,,
平面,平面,平面,
,平面平面,
平面,平面;
(2)取的中点,连接、、、、,
、分别为、的中点,,
在正方体中,且,
所以,四边形是平行四边形,,,
、、、四点共面,
的面积为,
平面,三棱锥的体积为.
由勾股定理得,,.
在中,,
,
的面积为,
设点到平面的距离为,由,
即,解得.
因此,点到平面的距离为.
科目:高中数学 来源: 题型:
【题目】已知是定义在[-1,1]上的奇函数且,若ab∈[-1,1],a+b≠0,有成立.
(1)判断函数在[-1,1]上是增函数还是减函数,并加以证明.
(2)解不等式.
(3)若对所有, 恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.
某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线,,与曲线分别交于异于极点O的四点A,B,C,D.
(1)若曲线关于对称,求的值,并求的参数方程;
(2)若 |,当时,求的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到:任画…条线段,然后把它分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了由4条小线段构成的折线,称为“一次构造”;用同样的方法把每一条小线段重复上述步骤,得到由16条更小的线段构成的折线,称为“二次构造”;…;如此进行“n次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度大于初始线段的100倍,则至少需要构造的次数是( )(取,)
A.16B.17C.24D.25
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为4,直线被椭圆截得的线段长为.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点作互相垂直的两条直线分别交椭圆于两点(点不同于椭圆的右顶点),证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点到点的距离比到直线的距离小,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过曲线上一点()作两条直线,与曲线分别交于不同的两点,,若直线,的斜率分别为,,且.证明:直线过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com