精英家教网 > 高中数学 > 题目详情

(本小题共14分)已知是由满足下述条件的函数构成的集合:对任意,①方程有实数根;②函数的导数满足

(Ⅰ)判断函数是否是集合中的元素,并说明理由;

(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;

(Ⅲ)对任意,且,求证:对于定义域中任意的,当,且时,.

 

【答案】

解:(Ⅰ)因为①当时,

所以方程有实数根0;

所以,满足条件

由①②,函数是集合中的元素.        …………5分

(Ⅱ)假设方程存在两个实数根

.

不妨设,根据题意存在

满足.

因为,且,所以.

与已知矛盾.又有实数根,

所以方程有且只有一个实数根.                 …………10分

(Ⅲ)当时,结论显然成立;

,不妨设.

因为,且所以为增函数,那么.

又因为,所以函数为减函数,

所以.

所以,即.

因为,所以,  (1)

又因为,所以, (2)

(1)(2)得.

所以.

综上,对于任意符合条件的,总有成立.……14分

【解析】本题是一道以集合为背景的创新题,考查函数的性质和不等式的证明。考查学生的理解能力和分析能力。读懂题意是解题的前提,解题是注意分类讨论思想的应用。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年北京卷文)(本小题共14分)

已知的顶点在椭圆上,在直线上,且

(Ⅰ)当边通过坐标原点时,求的长及的面积;

(Ⅱ)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题共14分)

已知双曲线的离心率为,右准线方程为

(Ⅰ)求双曲线的方程;(Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值..

查看答案和解析>>

科目:高中数学 来源:2010年北京市宣武区高三第二次模拟考试数学(理) 题型:解答题

(本小题共14分)
已知,动点到定点的距离比到定直线的距离小.
(I)求动点的轨迹的方程;
(Ⅱ)设是轨迹上异于原点的两个不同点,,求面积的最小值;
(Ⅲ)在轨迹上是否存在两点关于直线对称?若存在,求出直线 的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年普通高中招生考试北京市高考理科数学 题型:解答题

((本小题共14分)
已知椭圆.过点(m,0)作圆的切线l交椭圆GAB两点.
(I)求椭圆G的焦点坐标和离心率;
(II)将表示为m的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题

(本小题共14分)  

已知点,动点P满足,记动点P的轨迹为W

(Ⅰ)求W的方程;

(Ⅱ)直线与曲线W交于不同的两点CD,若存在点,使得成立,求实数m的取值范围.

 

 

查看答案和解析>>

同步练习册答案