精英家教网 > 高中数学 > 题目详情

【题目】下列结论中错误的是(

A.2m3”是方程表示椭圆的必要不充分条件

B.命题p:,使得的否定

C.命题,则方程有实根的逆否命题是真命题

D.命题,则的否命题是,则

【答案】B

【解析】

逐一判断选项,A.当方程表示椭圆时,求的范围,再判断是否是必要非充分条件;B.根据特称命题的否定形式直接判断;C.利用原命题和逆否命题的等价性判断;D.根据否命题的形式判断.

A.当方程表示椭圆时, ,解得:,且

2m3”是方程表示椭圆的必要不充分条件,故正确;

B.根据特称命题的否定形式可知,故错误;

C.方程有实根,则,解得: ,所以,则方程有实根是真命题,原命题和逆否命题等价,所以其逆否命题也是真命题,故正确;

D.根据原命题与否命题的形式可判断是正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:

1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)

2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:多面体中,四边形为矩形,二面角60°,

(1)求证:平面

(2)线段上一点,若锐二面角的正弦值为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为菱形,对角线的交点为,四边形为梯形, .

(Ⅰ)若,求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)若 ,求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,直线交于两点,的面积为.

(1)求的方程;

(2)若上的两个动点,,试问:是否存在定点,使得?若存在,求的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在直角梯形ABCD中,AD1ADBCABBCBDDC,点EBC边的中点,将ABD沿BD折起,使平面ABD⊥平面BCD,连接AEACDE,得到如图②所示的几何体.

(1)求证:AB⊥平面ADC

(2)AC与平面ABD所成角的正切值为,求二面角BADE的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系O中,直线与抛物线2相交于AB两点.

1)求证:命题“如果直线过点T30),那么3”是真命题;

2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方形中, 中点(图1).将沿折起,使得(图2)在图2中:

(1)求证:平面 平面

(2)在线段上是否存点,使得二面角为大小为说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人有楼房一幢,室内总面积为,拟分割成两类房间作为旅游客房,有关的数据如下表:

大房间

小房间

每间的面积

每间装修费

6000

每天每间住人数

5

3

每天每人住宿费

80

100

如果他只能筹款80000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得的住宿总收入最多?每天获得的住宿总收入最多是多少?

查看答案和解析>>

同步练习册答案