精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=4lnx﹣x+ , g(x)=2x2﹣bx+20,若对于任意x1∈(0,2),都存在x2∈[1,2],使得f(x1)≥g(x2)成立,则实数b的取值范围是

【答案】[13,+∞)
【解析】∵函数f(x)=4lnx﹣x+ , (x>0)
∴f′(x)=﹣1﹣=﹣
若f′(x)>0,1<x<3,f(x)为增函数;
若f′(x)<0,x>3或0<x<1,f(x)为减函数;
f(x)在x∈(0,2)上有极值,
f(x)在x=1处取极小值也是最小值f(x)min=f(1)=﹣1+3=2;
∵g(x)=2x2﹣bx+20=2(x﹣2+4﹣ , 对称轴x= , x∈[1,2],
<1时,g(x)在x=1处取最小值g(x)min=g(1)=2﹣b+20=22﹣b;
当1<<2时,g(x)在x=处取最小值g(x)min=g(b)=4﹣
>2时,g(x)在[1,2]上是减函数,g(x)min=g(2)=8﹣2b+20=28﹣2b;
∵对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),
∴只要f(x)的最小值大于等于g(x)的最小值即可,
<1时,2≥22﹣b,解得b≥20,故b无解;
>2时,2≥28﹣2b,解得b≥13,
综上:b≥13,
所以答案是:[13,+∞).
【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下面给出四种说法: ①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;
②命题P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③设随机变量X服从正态分布N(0,1),若P(x>1)=p,则P(﹣1<X<0)= ﹣p
④回归直线一定过样本点的中心( ).
其中正确的说法有(请将你认为正确的说法的序号全部填写在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex(3x﹣1)﹣ax+a,其中a<1,若有且只有一个整数x0使得f(x0)≤0,则a的取值范
围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为(
A.(﹣∞,2)
B.(﹣∞,2]
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)的定义域是(0,+∞),f'(x)为f(x)的导函数,且满足f(x)<f'(x),则不等式 f(2)的解集是(
A.(﹣∞,2)∪(1,+∞)
B.(﹣2,1)
C.(﹣∞,﹣1)∪(2,+∞)
D.(﹣1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函数f(x)的单调区间;
(Ⅱ)若a=0,且当x≥0时,f(x)≥1总成立,求实数b的取值范围;
(Ⅲ)若a>0,b=0,若f(x)存在两个极值点x1 , x2 , 求证;f(x1)+f(x2)<e.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知点A(1,1),B(3,3),点C在第二象限,且△ABC是以∠BAC为直角的等腰直角三角形.点P(x,y)在△ABC三边围城的区域内(含边界).
(1)若 + + = 求| |;
(2)设 =m +n (m,n∈R),求m+2n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标. 某市环保局从市区2016年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)
(Ⅰ)从这15天的数据中任取一天,求这天空气质量达到一级的概率;
(Ⅱ)从这15天的数据中任取3天的数据,记ξ表示其中空气质量达到一级的天数,求ξ的分布列;
(Ⅲ)以这15天的PM2.5的日均值来估计一年的空气质量情况,(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系原点O为极点,x轴正方向为极轴,已知曲线C1的参数方程为 (t为参数),C2的极坐标方程为ρ2(1+sin2θ)=8,C3的极坐标方程为θ=α,α∈[0,π),ρ∈R,
(1)若C1与C3的一个公共点为A(异于O点),且|OA|= ,求α;
(2)若C1与C3的一个公共点为A(异于O点),C2与C3的一个公共点为B,求|OA||OB|的取值范围.

查看答案和解析>>

同步练习册答案