精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数满足以下两个条件:①不等式的解集是②函数上的最小值是3.

(Ⅰ)求的解析式;

(Ⅱ)若点在函数的图象上,且.

(ⅰ)求证:数列为等比数列

(ⅱ)令,是否存在正实数,使不等式对于一切的恒成立?若存在,指出的取值范围;若不存在,请说明理由.

【答案】(Ⅰ);(Ⅱ)(ⅰ)证明过程见解析;(ⅱ)

【解析】

(Ⅰ)根据不等式的解集可知函数x轴的交点横坐标为0且开口向上,根据对称轴判断函数在上的最小值列出等式求解即可;(Ⅱ)(ⅰ)点代入函数并整理得,同时取对数即可得证;(ⅱ)求出的通项公式代入不等式可得对于一切的恒成立,利用二次函数的图象与性质求出的最大值即可得解.

(Ⅰ)因为不等式的解集是

所以设,且函数的对称轴为:

因为上单调递增,所以最小值为,解得

函数解析式为

(Ⅱ)(ⅰ)证明:因为点在函数的图象上,

所以,则

因为,所以

数列是以2为首项,2为公比的等比数列;

(ⅱ),要使不等式对于一切的恒成立,

对于一切的恒成立,

所以对于一切的恒成立,

,则()

所以当时, 不等式对于一切的恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为为参数, ).

(1)求曲线的直角坐标方程和直线的普通方程;

(2)若曲线上的动点到直线的最大距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,,点分别为的中点.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且两焦点与短轴的一个端点构成等腰直角三角形.

(Ⅰ)求椭圆的方程;

(Ⅱ)若圆的任意一条切线与椭圆E相交于P,Q两点,试问: 是否为定值? 若是,求这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)求甲射击一次,命中不足8环的概率;

(2)求甲射击一次,至少命中7环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的右焦点, 上的任意一点.

(1)求的取值范围;

(2)上异于的两点,若直线与直线的斜率之积为,证明: 两点的横坐标之和为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若求函数的图像在点处的切线方程;

(2)当时,函数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中,各踢了场, 各踢了场, 踢了场,且队与队未踢过, 队与队也未踢过,则在第一周的比赛中, 队踢的比赛的场数是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案