【题目】平面内有向量 =(1,7), =(5,1), =(2,1),点X为直线OP上的一个动点.
(1)当 取最小值时,求 的坐标;
(2)当点X满足(1)的条件和结论时,求cos∠AXB的值.
【答案】
(1)解:设 =(x,y),
∵点X在直线OP上,∴向量 与 共线.
又 =(2,1),∴x﹣2y=0,即x=2y.
∴ =(2y,y).又 = ﹣ , =(1,7),
∴ =(1﹣2y,7﹣y).
同样 = ﹣ =(5﹣2y,1﹣y).
于是 =(1﹣2y)(5﹣2y)+(7﹣y)(1﹣y)=5y2﹣20y+12=5(y﹣2)2﹣8.
∴当y=2时, 有最小值﹣8,此时 =(4,2)
(2)解:当 =(4,2),即y=2时,有 =(﹣3,5), =(1,﹣1).
∴| |= ,| |= .
∴cos∠AXB= =﹣
【解析】(1)因为点X在直线OP上,向量 与 共线,可以得到关于 坐标的一个关系式,再根据 的最小值,求得 的坐标,(2)cos∠AXB是 与 夹角的余弦,利用数量积的知识易解决.
科目:高中数学 来源: 题型:
【题目】如图, 是半圆的直径, 是半圆上除、外的一个动点, 垂直于半圆所在的平面, , , , .
(1)证明:平面平面;
(2)当三棱锥体积最大时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱柱中, 底面,底面为菱形, 为与交点,已知,.
(Ⅰ)求证: 平面;
(Ⅱ)求证: ∥平面;
(Ⅲ)设点在内(含边界),且 ,说明满足条件的点的轨迹,并求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足a1=1,且an , an+1是函数f(x)=x2﹣bnx+2n的两个零点,则b10等于( )
A.24
B.32
C.48
D.64
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,底面, ,、分别是棱、的中点.
(Ⅰ)求证:平面.
(Ⅱ)若线段上的点满足平面平面,试确定点的位置,并说明理由.
(Ⅲ)证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|cosx|sinx,给出下列四个说法:
①f(x)为奇函数; ②f(x)的一条对称轴为x= ;
③f(x)的最小正周期为π; ④f(x)在区间[﹣ , ]上单调递增;
⑤f(x)的图象关于点(﹣ ,0)成中心对称.
其中正确说法的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com