设f(x)=asin(πx+α)+bcos(πx+β)+4,其中a、b、α、β均为非零实数,若f(1988)=3,则f(2013)的值为( )
| A. | 1 | B. | 5 | C. | 3 | D. | 不确定 |
考点:
三角函数的周期性及其求法.
专题:
三角函数的求值.
分析:
利用诱导公式即可得出:f(1988)=asin(1988π+α)+bcos(1988π+α)+4=asinα+bcosα+4,从而得asinα+bcosα=﹣1,再利用诱导公式即可得出f(2013).
解答:
解:∵f(1988)=3,∴asin(1988π+α)+bcos(1988π+β)+4=3,得asinα+bcosβ=﹣1.
∴f(2013)=asin(2013π+α)+bcos(2013π+β)+4=﹣(asinα+bcosβ)+4=﹣(﹣1)+4=5.
故选B.
点评:
熟练掌握诱导公式是解题的关键.
科目:高中数学 来源: 题型:
π | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com