精英家教网 > 高中数学 > 题目详情
9.若$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,-2),$\overrightarrow{c}$=(2,1),则($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=(-16,-8),$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)=(-8,-12).

分析 利用平面向量的数量积和数乘的坐标运算解答.

解答 解:$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,-2),$\overrightarrow{c}$=(2,1),则($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=-8(2,1)=(-16,-8),
$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)=-4(2,3)=(-8,-12);
故答案为:(-16,-8);(-8,-12).

点评 本题考查了平面向量的数量积和数乘的坐标运算,注意运算法则的运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|0<x<3},B={x|-1<x<3},则A∪B=(  )
A.{x|-1<x<3}B.{x|0<x<3}C.{x|x>-1}D.{x|x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知P为△ABC所在平面内一点,且满足$\overrightarrow{AP}$=$\frac{1}{5}$$\overrightarrow{AC}$+$\frac{2}{5}$$\overrightarrow{AB}$,则△APB的面积与△APC的面积之比为(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.ABCD-A1B1C1D1是单位正方体,黑白两只蚂蚁从点A出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.白蚂蚁爬行的路线是AA1→A1D1,…,黑蚂蚁爬行的路线是AB→BB1,…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(i∈N*),设黑白蚂蚁都爬完2015段后各自停止在正方体的某个顶点处,则此时黑白蚂蚁的距离是(  )
A.$\sqrt{2}$B.1C.0D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.有两个不透明的箱子,每个箱子里都装有3个完全相同的小球,球上分别标有数字1,2,3.甲从其中一个箱子中随机摸出一个球,乙从另一个箱子中随机摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),则甲没有获胜的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且Sn=2n+1-2,数列{bn}满足b1=1,bn+1=bn+2,n∈N*
(1)求数列{an}、{bn}的通项公式;
(2)若cn=anbn,n∈N*,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=$\frac{x}{{x}^{2}+1}$的图象与函数y=sin$\frac{π}{2}$x(-5≤x≤5)的图象所有交点的横坐标之和等于(  )
A.0B.4C.10D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}的前n项和为Sn,且满足a1=1,2Sn=(n+1)an
(1)求数列{an}的通项公式;
(2)求和Tn=$\frac{1}{{{a}_{2}}^{2}-1}$+$\frac{1}{{{a}_{3}}^{2}-1}$+$\frac{1}{{{a}_{4}}^{2}-1}$+…+$\frac{1}{{{a}_{n+1}}^{2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从装有4个红球和3个黑球的口袋内任取3个球,那么互斥而不对立的事件是(  )
A.至少有一个红球与都是黑球B.至少有一个红球与恰有一个黑球
C.至少有一个红球与至少有一个黑球D.恰有一个红球与恰有两个红球

查看答案和解析>>

同步练习册答案