分析 利用平面向量的数量积和数乘的坐标运算解答.
解答 解:$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,-2),$\overrightarrow{c}$=(2,1),则($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=-8(2,1)=(-16,-8),
$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)=-4(2,3)=(-8,-12);
故答案为:(-16,-8);(-8,-12).
点评 本题考查了平面向量的数量积和数乘的坐标运算,注意运算法则的运用;属于基础题.
科目:高中数学 来源: 题型:选择题
A. | {x|-1<x<3} | B. | {x|0<x<3} | C. | {x|x>-1} | D. | {x|x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | 1 | C. | 0 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 4 | C. | 10 | D. | 2π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 至少有一个红球与都是黑球 | B. | 至少有一个红球与恰有一个黑球 | ||
C. | 至少有一个红球与至少有一个黑球 | D. | 恰有一个红球与恰有两个红球 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com