【题目】2020年2月1日0:00时,英国顺利“脱欧”.在此之前,英国“脱欧”这件国际大事被社会各界广泛关注,英国大选之后,曾预计将会在2020年1月31日完成“脱欧”,但是因为之前“脱欧”一直被延时,所以很多人认为并不能如期完成,某媒体随机在人群中抽取了100人做调查,其中40岁以上的55人中有10人认为不能完成,40岁以下的人中认为能完成的占.
(1)完成列联表,并回答能否有90%的把握认为“预测国际大事的准确率与年龄有关”?
能完成 | 不能完成 | 合计 | |
40岁以上 | |||
40岁以下 | |||
合计 |
(2)从上述100人中,采用按年龄分层抽样的方法,抽取20人,从这20人中再选取40岁以下的2人做深度调査,则2人中恰有1人认为英国能够完成“脱欧”的概率为多少?
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式为:
【答案】(1)联表详见解析,有90%的把握认为“预测国际大事的准确率与年龄有关”; (2).
【解析】
(1)由题意填写列联表,结合公式,即可求得答案;
(2)40岁以上人数为55,,40岁以下为45,比例为,抽取的20人中,40岁以下为9人,其中有6人是认为可以完成的,记为,,,,,,3人认为不能完成,记为,,,结合已知,即可求得答案.
(1)由题意可得列联表:
能完成 | 不能完成 | 合计 | |
40岁以上 | 45 | 10 | 55 |
40岁以下 | 30 | 15 | 45 |
合计 | 75 | 25 | 100 |
由附表知:,且,所以有90%的把握认为“预测国际大事的准确率与年龄有关”
(2)40岁以上人数为55,,40岁以下为45,比例为,抽取的20人中,40岁以下为9人,其中有6人是认为可以完成的,记为,,,,,,3人认为不能完成,记为,,,
从这9人中抽取2人共有:,,,,,,,,
,,,,,,,
,,,,,,
,,,,
,,,
,,
,
36个基本事件
设事件:从20人中抽取2位40岁以下的,2人中恰有1人认为应该能够完成“脱欧”.
事件共包括:,,,,,,,,,,,
,,,,,18个基本事件,
所以从20人中抽取2位40岁以下的作深度调查,2人中恰有1人认为应该能够完成“脱欧”的概率为.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知直线的参数方程为为参数,),以原点为极点,以轴正半轴建立极坐标系,曲线的极坐标系方程为.
(1)写出直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省新高考将实行“”模式,“3”为全国统考科目语文数学外语,所有学生必考;“1”为首选科目,考生须在物理历史两科中选择一科;“2”为再选科目,考生可在化学生物思想政治地理4个科目中选择两科.某考生已经确定“首选科目”为物理,如果他从“再选科目”中随机选择两科,则思想政治被选中的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1.
(1)求证:AB1⊥平面A1BC1;
(2)若D在B1C1上,满足B1D=2DC1,求AD与平面A1BC1所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,,若椭圆经过点,且△PF1F2的面积为2.
(1)求椭圆的标准方程;
(2)设斜率为1的直线与以原点为圆心,半径为的圆交于A,B两点,与椭圆C交于C,D两点,且(),当取得最小值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查国企员工对新个税法的满意程度,研究人员在地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布表,其中.(计算结果保留两位小数)
分数 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频率 | 0.08 | 0.35 | 0.27 |
(1)试估计被调查的员工的满意程度的中位数;
(2)若把每组的组中值作为该组的满意程度,试估计被调查的员工的满意程度的平均数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com