精英家教网 > 高中数学 > 题目详情

【题目】某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在学生甲和乙都不是第一个出场,且甲不是最后一个出场的前提下,学生丙第一个出场的概率为__________

【答案】

【解析】

由条件概率计算方式,分别计算事件A学生甲和乙都不是第一个出场,且甲不是最后一个出场的基本事件个数,其中分两类乙在最后与乙不在最后计数,与事件AB的基本事件个数,最后由公式求解即可.

设事件A学生甲和乙都不是第一个出场,且甲不是最后一个出场;事件B学生丙第一个出场

对事件A,甲和乙都不是第一个出场,第一类:乙在最后,则优先从中间4个位置中选一

个给甲,再将余下的4个人全排列有种;第二类:乙没有在最后,则优先从中间4

个位置中选两个给甲乙,再将余下的4个人全排列有种,故总的有.

对事件AB,此时丙第一个出场,优先从除了甲以外的4人中选一人安排在最后,再将余下的4人全排列有

.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且.

(1)求椭圆的方程;

(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①在线性回归模型中,相关指数越接近于1,表示回归效果越好;

②两个变量相关性越强,则相关系数r就越接近于1;

③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;

④两个模型中残差平方和越小的模型拟合的效果越好.

⑤回归直线恒过样本点的中心,且至少过一个样本点;

⑥若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构对某市工薪阶层的收入情况与超前消费行为进行调查,随机抽查了200人,将他们的月收入(单位:百元)频数分布及超前消费的认同人数整理得到如下表格:

月收入(百元)

频数

20

40

60

40

20

20

认同超前消费的人数

8

16

28

21

13

16

(1)根据以上统计数据填写下面列联表,并回答是否有99%的把握认为当月收入以8000元为分界点时,该市的工薪阶层对“超前消费”的态度有差异;

月收入不低于8000元

月收入低于8000元

总计

认同

不认同

总计

(2)若从月收入在的被调查对象中随机选取2人进行调查,求至少有1个人不认同“超前消费”的概率.

参考公式:(其中).

附表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,四边形为矩形,且平面与平面互相垂直.若多面体的体积为,则该多面体外接球表面积的最小值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:

(1)按分层抽样的方法从质量落在的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;

(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:

A.所有黄桃均以20/千克收购;

B.低于350克的黄桃以5/个收购,高于或等于350克的以9/个收购.

请你通过计算为该村选择收益最好的方案.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=,其中a为常数.

1)当a1时,求fx)的最大值;

2)若fx)在区间(0e]上的最大值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|x6n1nN*}B{x|x2nnN*},将AB的所有元素从小到大依次排列构成一个数列{an}.记Sn为数列{an}的前n项和,若Sm3014,则正整数m值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码t

1

2

3

4

5

6

年产量y(万吨)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根据表中数据,建立关于的线性回归方程

(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据:,计算结果保留小数点后两位)

查看答案和解析>>

同步练习册答案