【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,f (x)=sin(2x﹣A) (x∈R),函数f(x)的图象关于点( ,0)对称.
(1)当x∈(0, )时,求f (x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面积.
【答案】
(1)解:∵函数f(x)的图象关于点( ,0)对称,
∴f( )=0,即sin(2× ﹣A)=0.
又A∈(0,π),
∴A= .
∵x∈(0, ),
∴2x﹣ ∈(﹣ , ),
∴﹣ <sin(2x﹣ )≤1,
即函数f(x)的值域为(﹣ ,1].
(2)解:由正弦定理 ,
得sinB+sinC= + ,
又∵a=7,A= ,
∴sinB+sinC= (b+c).
∵sinB+sinC= ,
∴b+c=13.
由余弦定理a2=b2+c2﹣2bccosA,
得49=b2+c2﹣bc,
即49=(b+c)2﹣3bc=169﹣3bc,
∴bc=40.
∴S△ABC= bcsinA=10 .
【解析】(1)由题意sin(2× ﹣A)=0,结合A∈(0,π),可得A= ,由x∈(0, ),可求2x﹣ 的范围,利用正弦函数的图象和性质即可得解f(x)的值域.(2)由正弦定理得sinB+sinC= + ,结合已知可求b+c=13,利用余弦定理可求bc的值,利用三角形面积公式即可得解.
【考点精析】通过灵活运用正弦定理的定义和余弦定理的定义,掌握正弦定理:;余弦定理:;;即可以解答此题.
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面四边形ABCD是菱形, 是边长为2的等边三角形, , .
Ⅰ求证: 底面ABCD;
Ⅱ求直线CP与平面BDF所成角的大小;
Ⅲ在线段PB上是否存在一点M,使得平面BDF?如果存在,求的值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数=
(1)写出该函数的单调区间;
(2)若函数=-m恰有3个不同零点,求实数m的取值范围;
(3)若≤n2-2bn+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)计算甲、乙两人射箭命中环数的平均数和标准差;
(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,侧棱垂直于底面, , , , , 分别为, 的中点.
(1)求证:平面平面;
(2)求证:在棱上存在一点,使得平面平面;
(3)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.
(1)若p=2且∠BFD=90°时,求圆F的方程;
(2)若A,B,F三点在同一直线m上,设直线m与抛物线C的另一个交点为E,在y轴上求一点G,使得∠OGE=∠OGA.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆: 的离心率,短轴右端点为, 为线段的中点.
(Ⅰ) 求椭圆的方程;
(Ⅱ)过点任作一条直线与椭圆相交于两点,试探究在轴上是否存在定点,使得,若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com