精英家教网 > 高中数学 > 题目详情
cos(2α-β)=-
11
14
,sin(α-2β)=
4
3
7
,已知0<β<
π
4
<α<
π
2
,求α+β的值.
考点:两角和与差的余弦函数
专题:三角函数的求值
分析:由条件利用同角三角函数的基本关系求得sin(2α-β)和cos(α-2β)的值,再利用两角差的余弦公式求得cos(α+β)=cos[(2α-β)-(α-2β)]的值.
解答: 解:∵cos(2α-β)=-
11
14
,sin(α-2β)=
4
3
7
,0<β<
π
4
<α<
π
2
,2α-β为钝角,α-2β为锐角,
∴sin(2α-β)=
1-cos2(2α-β)
=
5
3
14
,cos(α-2β)=
1-sin2(α-2β)
=
1
7

∴cos(α+β)=cos[(2α-β)-(α-2β)]=cos(2α-β)cos(α-2β)+sin(2α-β)sin(α-2β)=-
11
14
1
7
+
5
3
14
4
3
7
=
1
2

∴α+β=
π
3
点评:本题主要考查同角三角函数的基本关系、两角和的三角公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(α)=
sin2(π-α)•cos(2π-α)•tan(-π+α)
sin(π+α)•tan(-α+3π)

(1)化简f(α);
(2)若f(α)=
1
8
,且
π
4
<α<
π
2
,求cosα-sinα的值;
(3)求满足f(α)≥
1
4
的α的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点:P(1,-4),A(3,2),则点A关于点P的对称点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+(m-2)x+5-m=0的两根为x1,x2,且x1<2,x2>3,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d>0,3a3=4a7,则当前n项和Sn取最小值时,n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(θ+
π
4
)=
1
2
,则sinθcosθ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校为了丰富学生的业余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取题目,背诵正确加10分,背诵错误减10分,只有“正确”和“错误”两种结果,其中某班级的正确率为p=
2
3
,背诵错误的概率为q=
1
3
,现记“该班级完成n首背诵后总得分为Sn”.
(Ⅰ) 求S6=20且Si≥0(i=1,2,3)的概率;
(Ⅱ)记ξ=|S5|,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
sinα0
0-
2
cosβ
为单位矩阵,且α、β∈[
π
2
,π]
,则tan(α+β)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.
(Ⅰ)求证:AB为圆的直径;
(Ⅱ)若AC=BD,AB=5,求弦DE的长.

查看答案和解析>>

同步练习册答案