精英家教网 > 高中数学 > 题目详情
对任意非零实数,定义的算法原理如右侧程序框图所示.设为函数的最大值,为双曲线的离心率,则计算机执行该运算后输出的结果是(   )
A.B.C.D.
B

试题分析:因为函数,当时,函数取得最大值,而双曲线的离心率为,根据程序框图是条件结构,而不成立,所以执行,故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,设椭圆动直线与椭圆只有一个公共点,且点在第一象限.
(1)已知直线的斜率为,用表示点的坐标;
(2)若过原点的直线垂直,证明:点到直线的距离的最大值为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013·上海高考)如图,已知双曲线C1-y2=1,曲线C2:|y|=|x|+1.P是平面内一点.若存在过点P的直线与C1,C2都有共同点,则称P为“C1-C2型点”.

(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证).
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”.
(3)求证:圆x2+y2=内的点都不是“C1-C2型点”.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆
(1)求椭圆及圆的方程;
(2)若点是圆劣弧上一动点(点异于端点),直线分别交线段,椭圆于点,直线交于点
(ⅰ)求的最大值;
(ⅱ)试问:..,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F为抛物线y2=2x的焦点,A、B、C为抛物线上三点,若F为△ABC的重心,则|
FA
|+|
FB
|+|
FC
|的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线 的一个焦点与抛物线的焦点重合,且双曲线的离心率等于,则该双曲线的方程为(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设直线与双曲线的两条渐近线分别交于,若满足,则双曲线的离心率是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆的焦点在轴上,离心率为,且经过点
(1)求椭圆的标准方程;
(2) 以椭圆的长轴为直径作圆,设为圆上不在坐标轴上的任意一点,轴上一点,过圆心作直线的垂线交椭圆右准线于点.问:直线能否与圆总相切,如果能,求出点的坐标;如果不能,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线的焦点为,已知为抛物线上的两个动点,且满足,过弦的中点作抛物线准线的垂线,垂足为,则的最大值为     .

查看答案和解析>>

同步练习册答案