精英家教网 > 高中数学 > 题目详情

【题目】下列关系式中正确的是(  )

A. sin11°cos10°sin168° B. sin168°sin11°cos10°

C. sin11°sin168°cos10° D. sin168°cos10°sin11°

【答案】C

【解析】试题先根据诱导公式得到sin168°=sin12°cos10°=sin80°,再结合正弦函数的单调性可得到sin11°sin12°sin80°从而可确定答案.

解:∵sin168°=sin180°﹣12°=sin12°

cos10°=sin90°﹣10°=sin80°

∵y=sinxx∈[0]上是增函数,

∴sin11°sin12°sin80°,即sin11°sin168°cos10°

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义在R上的奇函数,当时,其中

(1)求的解析式;

(2)解关于的不等式结果用集合或区间表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两所学校高三年级分别有600人,500人,为了解两所学校全体高三年级学生在该地区五校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

3

4

7

14

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

17

x

4

2

乙校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

1

2

8

9

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

10

10

y

4


(1)计算x,y的值;
(2)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写下面的2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异;
(3)若规定考试成绩在[120,150]内为优秀,现从已抽取的110人中抽取两人,要求每校抽1人,所抽的两人中有人优秀的条件下,求乙校被抽到的同学不是优秀的概率.

甲校

乙校

总计

优秀

非优秀

总计

参考公式:K2= ,其中n=a+b+c+d.
临界值表:

P(K2≥k0

0.10

0.05

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,若对于任意的,,当时,都有,则称函数上为非减函数.设函数上为非减函数,且满足以下三个条件:①;②;③,则等于( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)在(2,+∞)上单调递减,且y=f(x+2)为偶函数,则关于x的不等式f(2x﹣1)﹣f(x+1)>0的解集为(
A.(﹣∞,﹣ )∪(2,+∞)
B.(﹣ ,2)
C.(﹣∞, )∪(2,+∞)
D.( ,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解该校教师对教工食堂的满意度情况,随机访问了名教师.根据这名教师对该食堂的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为: ,…, .

(1)求频率分布直方图中的值;

(2)从评分在的受访教师中,随机抽取2人,求此2人的评分都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若对任意,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标系方程是 ,正方形ABCD的顶点都在C1上,且A,B,C,D依逆时针次序排列,点A的极坐标为
(1)求点A,B,C,D的直角坐标;
(2)设P为C2上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)不论取什么值, 函数的图象都过定点,求点的坐标;

(2)若成立, 求的取值范围.

查看答案和解析>>

同步练习册答案