精英家教网 > 高中数学 > 题目详情
已知抛物线L的方程为x2=2py(p>0),直线y=x截抛物线L所得弦长为
2

(Ⅰ)求p的值;
(Ⅱ)若直角三角形ABC的三个顶点在抛物线L上,且直角顶点B的横坐标为1,过点A、C分别作抛物线L的切线,两切线相交于点D,直线AC与y轴交于点E,当直线BC的斜率在[3,4]上变化时,直线DE斜率是否存在最大值,若存在,求其最大值和直线BC的方程;若不存在,请说明理由.
分析:(Ⅰ)联立方程组,利用弦长公式,直接求出p的值;
(Ⅱ)设A(x1x12),C(x2x22),设BC的斜率为k,
y-1=k(x-1)
x2=y
,求出kAC,得到直线AC的方程,求出ED的斜率,利用函数的单调性求出斜率AD的最大值,求出BC的方程.
解答:(Ⅰ)  解:由
y=x
x2=2py
解得A(0,0),B(2p,2p)…2分
2
=AB=
4p2+4p2
=2
2
p

∴p=
1
2
  …5分
(Ⅱ) 解:B(1,1),设A(x1x12),C(x2x22),kAC=
x
2
1
-
x
2
2
x1-x2 
=x1+x2
设BC的斜率为k,则
y-1=k(x-1)
x2=y
⇒x2-kx+k-1=0,
△=k2-4k+4≥0,
又1+x2=k⇒x2=k-1,C(k-1,(k-1)2),A(-
1
k
-1,(
1
k
+1)
2
)

kAC=x1+x2=k-
1
k
-2,
直线AC的方程为y-(k-1)2=(k-
1
k
-2)[x-(k-1)],
令x=0,y=k-
1
k
,所以E(0,k-
1
k
),
AD:y-x12=2x1(x-x1)⇒y=2x1x-x12
同理CD:y=2x2x-x22
联立两方程得D(
1
2
(k-
1
k
-2),
1
k
-k
),E(0,k-
1
k
),kED=
k-
1
k
+k-
1
k
1
2
(2+
1
k
-k)
=-4(1+
2
k-
1
k
-2
)

令u=
1
k
-k,在[3,4]递减,所以,当k=4时,kED最大为-
60
7

所以,BC的方程为y-1=4(x-1)即4x-y-3=0…12分
点评:本题是中档题,考查直线与圆锥曲线方程的综合问题,设而不求的思想,韦达定理的应用,函数的单调性等知识,考查计算能力转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线L的方程为x2=2py(p>0),直线y=x截抛物线L所得弦|AB|=4
2

(1)求p的值;
(2)抛物线L上是否存在异于点A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线.若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:期末题 题型:解答题

已知抛物线L的方程为x2=2py(p>0),直线y=x截抛物线L所得弦
(1)求p的值;
(2)抛物线L上是否存在异于点A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线.若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线L的方程为,直线截抛物线L所得弦长为

(Ⅰ)求p的值;

(Ⅱ)若直角三角形的三个顶点在抛物线L上,且直角顶点的横坐标为1,过点分别作抛物线L的切线,两切线相交于点,直线轴交于点,当直线的斜率在上变化时,直线斜率是否存在最大值,若存在,求其最大值和直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省天一中学、海门中学、盐城中学联考高三(下)2月调研数学试卷(解析版) 题型:解答题

已知抛物线L的方程为x2=2py(p>0),直线y=x截抛物线L所得弦
(1)求p的值;
(2)抛物线L上是否存在异于点A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线.若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案