精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c,若f(x)+f(x+1)=2x2-2x+13
(1)求函数f(x)的解析式;
(2)画该函数的图象;
(3)当x∈[t,5]时,求函数f(x)的最大值.
分析:(1)由f(x+1)=a(x+1)2+b(x+1)+c,得到f(x)+f(x+1)=2ax2+(2a+2b)x+a+b+2c=2x2-2x+13,由此求出a,b,c的值,从而得到函数f(x)的解析式.
(2)先求出该函数的对称轴和顶点为坐标,再求出它与y轴的交点坐标,然后结合函数的对称性作出这条开口向上的抛物线.
(3)x∈[t,5],f(x)=x2-2x+7=(x-1)2+6,当-3≤t≤5时,函数f(x)的最大值为f(5)=f(-3)=9+6+7=22.当t<-3时,函数f(x)的最大值为f(t)=(t-1)2+6.
解答:解:(1)f(x)+f(x+1)=ax2+bx+c+a(x+1)2+b(x+1)+c=2ax2+(2a+2b)x+a+b+2c
∵f(x)+f(x+1)=2x2-2x+13∴
2a=2
2a+2b=-2
a+b+2c=13
a=1
b=-2
c=7
∴f(x)=x2-2x+7
(2)该函数是对称轴为x=1,顶点为(1,6),与x轴无交点,与y轴交于(0,7),开口向上的抛物线.
精英家教网
(3)∵x∈[t,5],f(x)=x2-2x+7=(x-1)2+6,
∴当-3≤t≤5时,函数f(x)的最大值为f(5)=f(-3)=9+6+7=22.
当t<-3时,函数f(x)的最大值为f(t)=(t-1)2+6.
f(x)max=
22,-3≤t≤5
(t-1)2+6,t<-3
点评:本题考查二次函数的图象和性质,解题时要认真审题,注意配方法和合理运用和图形结合思想的巧妙运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案