【题目】如图,在四棱锥中,已知底面,,,,,是上一点.
(1)求证:平面平面;
(2)若是的中点,且二面角的余弦值是,求直线与平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】将函数图象上的所有点的横坐标伸长到原来的2倍,再把所得各点向右平移个单位长度,最后把所得各点纵坐标扩大到原来的2倍,就得到函数f(x)的图象,则下列说法中正确的个数是( )
①函数f(x)的最小正周期为2π;
②函数f(x)的最大值为2;
③函数f(x)图象的对称轴方程为;
④设x1,x2为方程的两个不相等的根,则的最小值为.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.
(1)当时,求M点的极坐标;
(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,为椭圆的右焦点,为椭圆上一点,的离心率
(1)求椭圆的标准方程;
(2)斜率为的直线过点交椭圆于两点,线段的中垂线交轴于点,试探究是否为定值,如果是,请求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,为直三棱柱,四边形为平行四边形,,,.
(1)证明:四点共面,且;
(2)若,点是上一点,求四棱锥的体积,并判断点到平面的距离是否为定值?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班有甲乙两个物理科代表,从若干次物理考试中,随机抽取八次成绩的茎叶图(其中茎为成绩十位数字,叶为成绩的个位数字)如下:
(1)分别求甲、乙两个科代表成绩的中位数;
(2)分别求甲、乙两个科代表成绩的平均数,并说明哪个科代表的成绩更稳定;
(3)将频率视为概率,对乙科代表今后三次考试的成绩进行预测,记这三次成绩中不低于90分的次数为,求的分布列及均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校健康社团为调查本校大学生每周运动的时长,随机选取了80名学生,调查他们每周运动的总时长(单位:小时),按照共6组进行统计,得到男生、女生每周运动的时长的统计如下(表1、2),规定每周运动15小时以上(含15小时)的称为“运动合格者”,其中每周运动25小时以上(含25小时)的称为“运动达人”.
表1:男生
时长 | ||||||
人数 | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
时长 | ||||||
人数 | 0 | 4 | 12 | 12 | 8 | 4 |
(1)从每周运动时长不小于20小时的男生中随机选取2人,求选到“运动达人”的概率;
(2)根据题目条件,完成下面列联表,并判断能否有99%的把握认为本校大学生是否为“运动合格者”与性别有关.
每周运动的时长小于15小时 | 每周运动的时长不小于15小时 | 总计 | |
男生 | |||
女生 | |||
总计 | |||
参考公式:,其中.
参考数据:
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,平面,,,且,,,分别为棱,,,的中点.
(I)证明:直线与共面;
(Ⅱ)证明:平面平面;并试写出到平面的距离(不必写出计算过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2013年以来,“一带一路”建设成果显著.下图是2013-2017年,我国对“一带一路”沿线国家进出口情况统计图.下列描述错误的是( )
A.这五年,2013年出口额最少
B.这五年,出口总额比进口总额多
C.这五年,出口增速前四年逐年下降
D.这五年,2017年进口增速最快
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com