精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)2xg(x)2x的图象如图所示,设两函数的图象交于点A(x1y1)B(x2y2),且x1x2.

1)请指出图中曲线C1C2分别对应的函数;

2)结合函数图象,判断f(2 019)g(2 019)的大小.

【答案】1C1对应的函数为g(x)2xC2对应的函数为f(x)2x 2f(2 019)g(2 019)

【解析】

1)观察图象可得结果;

2)从图象上可以看出,当1x2时,f(x)g(x),进而可得的大小,当x2时,f(x)g(x),可得f(2 019)g(2 019)的大小关系.

1)由图像可得:C1对应的函数为g(x)2xC2对应的函数为f(x)2x.

2)∵f(1)g(1)f(2)g(2)

从图象上可以看出,当1x2时,f(x)g(x)

x2时,f(x)g(x)

f(2 019)g(2 019).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过椭圆W:的左焦点作直线交椭圆于两点,其中 ,另一条过的直线交椭圆于两点(不与重合),且点不与点重合.轴的垂线分别交直线,.

(Ⅰ)求点坐标和直线的方程;

(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)已知直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆W:的左焦点作直线交椭圆于两点,其中 ,另一条过的直线交椭圆于两点(不与重合),且点不与点重合.轴的垂线分别交直线,.

(Ⅰ)求点坐标和直线的方程;

(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为(万元)

1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;

2)当这种产品的年产量为多少时,当年所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是

1)求图中的值;

2)根据频率分布直方图,估计这200名学生的平均分;

3)若这200名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如表所示,求英语成绩在的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点在轴上,且椭圆的焦距为2.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点的直线与椭圆交于两点,过轴且与椭圆交于另一点 为椭圆的右焦点,求证:三点在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有编号为1,2,3…n的n个学生,入座编号为1,2,3…n的n个座位,每个学生规定坐一个座位, 设学生所坐的座位号与该生的编号不同的学生人数为, 已知时, 共有6种坐法.

(1)求的值;

(2)求随机变量的概率分布列及数学期望

查看答案和解析>>

同步练习册答案