精英家教网 > 高中数学 > 题目详情
3.已知A,B是圆${C_1}:{x^2}+{y^2}=1$上的动点,$AB=\sqrt{3}$,P是圆${C_2}:{(x-3)^2}+{(y-4)^2}=1$上的动点,则$|{\overrightarrow{PA}+\overrightarrow{PB}}|$的取值范围为[7,13].

分析 求出AB的中点的轨迹方程,即可求出$|{\overrightarrow{PA}+\overrightarrow{PB}}|$的取值范围.

解答 解:取AB的中点C,则$|{\overrightarrow{PA}+\overrightarrow{PB}}|$=2|$\overrightarrow{PC}$|,C的轨迹方程是x2+y2=$\frac{1}{4}$,|C1C2|=5
由题意,|$\overrightarrow{PC}$|最大值为5+1+$\frac{1}{2}$=$\frac{13}{2}$,最小值为5-1-$\frac{1}{2}$=$\frac{7}{2}$.
∴$|{\overrightarrow{PA}+\overrightarrow{PB}}|$的取值范围为[7,13],
故答案为[7,13].

点评 本题考查圆与圆的位置关系,考查学生的计算能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln x.
(1)判断函数$g(x)=af(x)-\frac{1}{x}$的单调性;
(2)若对任意的x>0,不等式f(x)≤ax≤ex恒成立,求实数a的取值范围;
(3)若x1>x2>0,求证:$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>\frac{{2{x_2}}}{{{x_1}^2+{x_2}^2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}-2\overrightarrow{b}$=0,($\overrightarrow{a}-\overrightarrow{b}$)•$\overrightarrow{b}$=2,则|$\overrightarrow{b}$|=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={-2,0},B={-2,3},则A∪B={-2,0,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数$f(x)=sin(ωπx-\frac{π}{6})(ω>0)$的最小正周期为$\frac{1}{5}$,则$f(\frac{1}{3})$的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正项数列{an}的前n项和为Sn,且a1=a,(an+1)(an+1+1)=6(Sn+n),n∈N*
(1)求数列{an}的通项公式;
(2)若对于?n∈N*,都有Sn≤n(3n+1)成立,求实数a取值范围;
(3)当a=2时,将数列{an}中的部分项按原来的顺序构成数列{bn},且b1=a2,证明:存在无数个满足条件的无穷等比数列{bn}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:x=t与椭圆C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1相交于A,B两点,M是椭圆C上一点
(Ⅰ)当t=1时,求△MAB面积的最大值;
(Ⅱ)设直线MA和MB与x轴分别相交于点E,F,O为原点.证明:|OE|•|OF|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,AD∥BC,∠BAD=90°,PA=PD,AB⊥PA,AD=2,AB=BC=1
(Ⅰ)求证:AB⊥PD
(Ⅱ)若E为PD的中点,求证:CE∥平面PAB
(Ⅲ)设平面PAB∩平面PCD=PM,点M在平面ABCD上.当PA⊥PD时,求PM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=(x2-3)ex的单调减区间为(-3,1).

查看答案和解析>>

同步练习册答案