精英家教网 > 高中数学 > 题目详情
10.已知y=f(x+1)是R上的偶函数,且f(2)=1,则f(0)=(  )
A.-1B.0C.1D.2

分析 根据f(x+1)为偶函数便有f(x+1)=f(-x+1),从而f(2)=f(1+1)=f(-1+1),从而便可得出f(0)的值.

解答 解:f(x+1)为R上的偶函数;
∴f(2)=f(1+1)=f(-1+1)=f(0)=1;
即f(0)=1.
故选:C.

点评 考查偶函数的定义,要清楚函数y=f(x+1)的自变量是什么.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x-1)=x2+(2a-2)x+3-2a.
(1)若函数f(x)在[-5,5]上为单调函数,求实数a的取值范围.
(2)求a的值,使f(x)在区间[-5,5]上的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义域为R的函数f(x)满足f(-x)+f(x)=0,且当x>0时,f(x)=x2-2
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象并指出它的单调区间.
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=ex(x2-(2a+4)x+6a+4),讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M是AD的中点,则异面直线CM,AB所成的角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A=$\left\{{x\left|{\frac{x-3}{x}>0}\right.}\right\}$,集合B={x||2x-1|<3}.
(1)分别求集合A、B;
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向量$\overrightarrow m=(\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2})$,$\overrightarrow n=(sinx,cosx),x∈(0,π)$,①若$\overrightarrow m∥\overrightarrow n$,则tanx=-1;②若$\overrightarrow m$与$\overrightarrow n$的夹角为$\frac{π}{3}$,则x=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足$\frac{cosA}{cosB}=-\frac{a}{b+2c}$.
(1)求角A的大小;
(2)求sinBsinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=$\left\{{\begin{array}{l}{{x^2}-4x+2,x≥0}\\{x+5,x<0}\end{array}}\right.$,则f(-1)+f(1)=3.

查看答案和解析>>

同步练习册答案