【题目】已知数列{an}、{bn}满足:a1=,an+bn=1,bn+1=.
(1)求a2,a3;
(2)证数列为等差数列,并求数列{an}和{bn}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数λ为何值时4λSn<bn恒成立.
【答案】(1);(2)证明见解析,,(3)λ≤1
【解析】
(1)由给出的,循环代入和可求解,;
(2)由得,结合,去掉与得到与的关系式,整理变形后可证得数列是以4为首项,1为公差的等差数列,求出其通项公式后即可求得数列和的通项公式;
(3)首先利用裂项求和求出,代入,通过对分类讨论,结合二次函数的最值求使恒成立的实数的值.
(1)解:,,,
,,,
∴;
(2)证明:由,
,
,即,
,
数列是以4为首项,1为公差的等差数列,
,则,
;
(3)解:由,
,
,
要使恒成立,只需恒成立,
设,
当时,恒成立;
当时,由二次函数的性质知不满足对于任意恒成立;
当时,对称轴,在,为单调递减函数,
只需,
,∴时,恒成立,
综上知:时,恒成立.
科目:高中数学 来源: 题型:
【题目】设是数列的前n项和,对任意都有,(其中k、b、p都是常数).
(1)当、、时,求;
(2)当、、时,若、,求数列的通项公式;
(3)若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”。当、、时,.试问:是否存在这样的“封闭数列”.使得对任意.都有,且.若存在,求数列的首项的所有取值的集合;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域是一切实数的函数,其图像是连续不断的,且存在常数()使得
对任意实数都成立,则称是一个“—伴随函数”.有下列关于“—伴随函数”的结论:
①是常数函数中唯一一个“—伴随函数”;
②“—伴随函数”至少有一个零点;
③是一个“—伴随函数”;
其中正确结论的个数是 ( )
A.1个;B.2个;C.3个;D.0个;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,过点且斜率为 的直线和以椭圆的右顶点为圆心,短半轴为半径的圆相切.
(1)求椭圆的方程;
(2)椭圆的左、右顶点分为A,B,过右焦点的直线l交椭圆于P,Q两点,求四边形APBQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率为,为椭圆上一动点(异于左右顶点),面积的最大值为.
(1)求椭圆的方程;
(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列 ,为其前项的和,满足.
(1)求数列的通项公式;
(2)设数列的前项和为,数列的前项和为,求证:当时;
(3)(理)已知当,且时有,其中,求满足的所有的值.
(4)(文)若函数的定义域为,并且,求证.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,直线经过点与相交于、两点.
(1)若且,求证: 必为的焦点;
(2)设,若点在上,且的最大值为,求的值;
(3)设为坐标原点,若,直线的一个法向量为,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,,则下面结论正确的是( )
A.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
D.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com