精英家教网 > 高中数学 > 题目详情
在正四面体ABCD中,E、F分别为棱AD、BC的中点,连接AF、CE,则异面直线AF和CE所成角的正弦值为( )
A.
B.
C.
D.
【答案】分析:画出立体图形,根据中点找平行线,把所求的异面直线角转化为一个三角形的内角来计算.
解答:解:如图,连接BE,取BE的中点K,连接FK,则FK∥CE,
故∠AFK即为所求的异面直线角或者其补角.
设这个正四面体的棱长为2,在△AKF中,
AF=,KF=CE=
AK===
∴cos∠AFK===
∴sin∠AFK===
故选D.
点评:本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力.在立体几何中找平行线是解决问题的一个重要技巧,这个技巧就是通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧.本题易错点在于要看清是求异面直线AF和CE所成角的正弦值,而不是余弦值,不要错选答案B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正四面体ABCD中,E、F分别是BC、AD中点,则异面直线AE与CF所成的角是
 
.(用反三角值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有关正三角形的一个结论:“在正三角形ABC中,若D是BC的中点,G是三角形ABC内切圆的圆心,则
AG
GD
=2”.若把该结论推广到正四面体(所有棱长均相等的三棱锥),则有结论:“在正四面体ABCD中,若M是正三角形BCD的中心,O是在正四面体ABCD内切球的球心,则
AO
OM
=
3
3
”.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学使用类比推理得到如下结论:
(1)同一平面内,三条不同的直线a,b,c,若a⊥c,b⊥c,则a∥b,类比出:空间中,三条不同的直线a,b,c,若a⊥c,b⊥c,则a∥b;
(2)a,b∈R,a-b>0则a>b,类比出:a,b∈C,a-b>0则a>b;
(3)以点(0,0)为圆心,r为半径的圆的方程是x2+y2=r2,类比出:以点(0,0,0)为球心,r为半径的球的方程是x2+y2+z2=r2
(4)正三角形ABC中,M是BC的中点,O是△ABC外接圆的圆心,则
AO
OM
=2
,类比出:在正四面体ABCD中,若M是△BCD的三边中线的交点,O为四面体ABCD外接球的球心,则
AO
OM
=3

其中类比的结论正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正四面体ABCD中,点E为棱AD的中点,则异面直线AB与CE所成角的大小为
arccos
3
6
arccos
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在正四面体ABCD中,E,F分别为BC,AD的中点,则异面直线AE与CF所成角的余弦值是
 

查看答案和解析>>

同步练习册答案