精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.

【答案】
(1)

证明:取BC中点E,连结EN,EM,

∵N为PC的中点,∴NE是△PBC的中位线,

∴NE∥PB,

又∵AD∥BC,∴BE∥AD,

∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,

∴BE= BC=AM=2,

∴四边形ABEM是平行四边形,

∴EM∥AB,∴平面NEM∥平面PAB,

∵MN平面NEM,∴MN∥平面PAB


(2)

解:在△AMC中,由AM=2,AC=3,cos∠MAC= ,得CM2=AC2+AM2﹣2ACAMcos∠MAC=9+4- =5.

∴AM2+MC2=AC2,则AM⊥MC,

∵PA⊥底面ABCD,PA平面PAD,

∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,

∴CM⊥平面PAD,则平面PNM⊥平面PAD.

在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.

在Rt△PAC中,由N是PC的中点,得AN=

在Rt△PAM中,由PAAM=PMAF,得AF=

∴直线AN与平面PMN所成角的正弦值为


【解析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG= BC,再由已知得AM∥BC,且AM= BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;
法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;
(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,

且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。

(1)求证:PB//平面EAC;

(2)求证:AE⊥平面PCD;

(3)当为何值时,PB⊥AC ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 R,函数 =
(1)当 时,解不等式 >1;
(2)若关于 的方程 + =0的解集中恰有一个元素,求 的值;
(3)设 >0,若对任意 ,函数 在区间 上的最大值与最小值的差不超过1,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在海岸处发现北偏东方向,距海里的处有一艘走私船,在处北偏西方向,距海里的处的我方辑私船奉命以海里/小时的速度追截走私船,此时走私船正以海里/小时的速度,以处向北偏东方向逃窜.问:辑私船沿什么方向行驶才能最快截获走私船?并求出所需时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,BC边上的高所在直线的方程为x2y10A的平分线所在的直线方程为y0.若点B的坐标为(1,2),求点A和点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个类比中,正确的个数为

(1)若一个偶函数在R上可导,则该函数的导函数为奇函数。将此结论类比到奇函数的结论为:若一个奇函数在R上可导,则该函数的导函数为偶函数。

(2)若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2.将此结论类比到椭圆的结论为:若椭圆的焦距是实轴长的一半,则此椭圆的离心率为.

(3)若一个等差数列的前3项和为1,则该数列的第2项为.将此结论类比到等比数列的结论为:若一个等比数列的前3项积为1,则该数列的第2项为1

(4)在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4.将此结论类比到空间中的结论为:在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式的解集为,则关于的不等式的解集为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ ,g(x)=x2﹣2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c.设向量 =(a,c), =(cosC,cosA).
(1)若 ,c= a,求角A;
(2)若 =3bsinB,cosA= ,求cosC的值.

查看答案和解析>>

同步练习册答案