【题目】设函数.
(1)当时,求函数的最大值;
(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;
(3)当, 时,方程有唯一实数解,求正数的值.
【答案】(1) (2) (3)
【解析】试题分析:(1)依题意确定的定义域,对求导,求出函数的单调性,即可求出函数的最大值;(2)表示出,根据其图象上存在一点,使此处切线的斜率可得,在上有解,即可求出实数的取值范围;(3)由,方程有唯一实数解,构造函数,求出的单调性,即可求出正数的值.
试题解析:(1)依题意, 的定义域为,当时, ,
由,得,解得
由,得,解得或
∵,∴在单调递増,在单调递减;所以的极大值为,此即为最大值
(2),则有,在上有解,
∴, ,∵,所以当时,
取得最小值,∴
(3)由得,令,
令, ,∴在上单调递增,而,
∴在,即,在,即,
∴在单调递减,在单调递増,∴极小值,令,即时方程有唯一实数解.
科目:高中数学 来源: 题型:
【题目】某P2P平台需要了解该平台投资者的大致年龄分布,发现其投资者年龄大多集中在区间[20,50]岁之间,对区间[20,50]岁的人群随机抽取20人进行了一次理财习惯调查,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 人数(单位:人) |
第一组 | [20,25) | 2 |
第二组 | [25,30) | a |
第三组 | [30,35) | 5 |
第四组 | [35,40) | 4 |
第五组 | [40,45) | 3 |
第六组 | [45,50] | 2 |
(Ⅰ)求a的值并画出频率分布直方图;
(Ⅱ)在统计表的第五与第六组的5人中,随机选取2人,求这2人的年龄都小于45岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某海轮以每小时30海里的速度航行,在点测得海面上油井在南偏东,海轮向北航行40分钟后到达点,测得油井在南偏东,海轮改为北偏东的航向再行驶80分钟到达点,则两点的距离为(单位:海里)
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数y=log3(),单位是m/s,θ是表示鱼的耗氧量的单位数.
(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?
(2)计算一条鱼静止时耗氧量的单位数。
(3)某条鲑鱼想把游速提高1 m/s,那么它的耗氧量的单位数是原来的多少倍?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)对任意的m,n∈R都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.
(1)求证:f(x)在R上是增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位建造一间地面面积为12的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度不得超过米,房屋正面的造价为400元/,房屋侧面的造价为150元/,屋顶和地面的造价费用合计为5800元,如果墙高为3,且不计房屋背面的费用.
(1)把房屋总价表示成的函数,并写出该函数的定义域;
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于在区间上有意义的函数,满足对任意的,,有恒成立,厄称在上是“友好”的,否则就称在上是“不友好”的,现有函数.
(1)若函数在区间()上是“友好”的,求实数的取值范围;
(2)若关于的方程的解集中有且只有一个元素,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com