精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1)当时,求函数的最大值;

2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;

(3)当 时,方程有唯一实数解,求正数的值.

【答案】(1) (2) (3)

【解析】试题分析:(1)依题意确定的定义域,对求导,求出函数的单调性,即可求出函数的最大值;(2)表示出,根据其图象上存在一点,使此处切线的斜率可得,在上有解,即可求出实数的取值范围;(3)由,方程有唯一实数解,构造函数,求出的单调性,即可求出正数的值.

试题解析:(1)依题意, 的定义域为,当时,

,得,解得

,得,解得

,∴单调递増,在单调递减;所以的极大值为,此即为最大值

(2),则有,在上有解,

,∵,所以当时,

取得最小值,∴

(3)由,令

,∴上单调递增,而

∴在,即,在,即

单调递减,在单调递増,∴极小值,令,即时方程有唯一实数解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】P2P平台需要了解该平台投资者的大致年龄分布,发现其投资者年龄大多集中在区间[20,50]岁之间,对区间[20,50]岁的人群随机抽取20人进行了一次理财习惯调查,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

人数(单位:人)

第一组

[20,25)

2

第二组

[25,30)

a

第三组

[30,35)

5

第四组

[35,40)

4

第五组

[40,45)

3

第六组

[45,50]

2

 

()a的值并画出频率分布直方图;

()在统计表的第五与第六组的5人中,随机选取2人,求这2人的年龄都小于45岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海轮以每小时30海里的速度航行,在点测得海面上油井在南偏东,海轮向北航行40分钟后到达点,测得油井在南偏东,海轮改为北偏东的航向再行驶80分钟到达点,则两点的距离为(单位:海里)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)当 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数y=log3,单位是m/s,θ是表示鱼的耗氧量的单位数.

(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?

(2)计算一条鱼静止时耗氧量的单位数。

(3)某条鲑鱼想把游速提高1 m/s,那么它的耗氧量的单位数是原来的多少倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)对任意的mnR都有f(mn)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.

(1)求证:f(x)R上是增函数;

(2)f(3)=4,解不等式f(a2a-5)<2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位建造一间地面面积为12的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度不得超过米,房屋正面的造价为400/,房屋侧面的造价为150/,屋顶和地面的造价费用合计为5800元,如果墙高为3,且不计房屋背面的费用.

1)把房屋总价表示成的函数,并写出该函数的定义域;

2)当侧面的长度为多少时,总造价最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于在区间上有意义的函数,满足对任意的,有恒成立,厄称上是“友好”的,否则就称上是“不友好”的,现有函数.

(1)若函数在区间)上是“友好”的,求实数的取值范围;

(2)若关于的方程的解集中有且只有一个元素,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 (m>1)与双曲线 (n>0)有公共焦点F1 , F2 . P是两曲线的交点,则 =(
A.4
B.2
C.1
D.

查看答案和解析>>

同步练习册答案