分析 (1)求出f(x)的导数,求得x=1处切线的斜率和切点,可得b=0,再由条件,可得k=1,进而得到f(x)的解析式;
(2)由f(x)的单调性,将条件转化为f(x1)-g(x1)>f(x2)-g(x2),令h(x)=f(x)-g(x),即有h(x)在[0,2]递增,求出h(x)的导数,考虑大于等于0恒成立,由参数分离,求得最值,即可得到a的范围.
解答 解:(1)函数f(x)=kex+b的导数为f′(x)=kex,
f(x)在x=1处的切线斜率为ke,
切点为(1,ke+b),即有ke=ke+b,
解得b=0,
由f′(1)+f(1)=2e,
即为ke+ke+b=2e,
解得k=1,
则f(x)的解析式为f(x)=ex;
(2)由f(x)在[0,2]递增,且x1>x2,
可得|f(x1)-f(x2)|=f(x1)-f(x2),
|f(x1)-f(x2)|>g(x1)-g(x2),
即为f(x1)-g(x1)>f(x2)-g(x2),
可令h(x)=f(x)-g(x),即有h(x)在[0,2]递增,
由h(x)=ex-x2-ax-1,h′(x)=ex-2x-a,
即有h′(x)≥0在[0,2]恒成立.
即为a≤ex-2x的最小值.
由ex-2x的导数为ex-2,当ln2<x≤2时,函数递增,
当0≤x<ln2时,函数递减.
可得x=ln2时取得最小值,且为2-2ln2.
则a≤2-2ln2.
即有a的取值范围是(-∞,2-2ln2].
点评 本题考查导数的运用:求切点斜率和单调区间、极值和最值,考查函数的单调性的运用,以及不等式恒成立问题的解法,注意参数分离,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 12+$\frac{π}{3}$ | B. | 12+$\frac{2π}{3}$ | C. | 12+π | D. | 12+$\frac{4π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com