精英家教网 > 高中数学 > 题目详情

【题目】(2017·贵州适应性考试)如图,在正方体ABCDA1B1C1D1中,点P是线段A1C1上的动点,则三棱锥PBCD 的俯视图与正视图面积之比的最大值为(  )

A. 1 B.

C. D. 2

【答案】D

【解析】正视图,底面BCD三点,其中DC重合,随着点P的变化,其正视图均是三角形且点P在正视图中的位置在边B1C1上移动,由此可知,设正方体的棱长为a,则S正视图a2;设A1C1的中点为O,随着点P的移动,在俯视图中,易知当点POC1上移动时,S俯视图就是底面三角形BCD的面积,当点POA1上移动时,点P越靠近A1,俯视图的面积越大,当到达A1的位置时,俯视图为正方形,此时俯视图的面积最大,S俯视图a2,所以三棱锥PBCD 的俯视图与正视图面积之比的最大值为=2. 选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当求函数的图象在处的切线方程

(2)若函数在定义域上为单调增函数

①求最大整数值

②证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知两个正方形ABCDDCEF不在同一平面内,MN分别为ABDF的中点.

(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;

(2)用反证法证明:直线MEBN是两条异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的焦点在x轴上,A是E的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA

(1)当t=4,|AM|=|AN|时,求AMN的面积;

(2)当2|AM|=|AN|时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求的单调区间.

)证明:当时,方程在区间上只有一个零点.

)设,其中恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,不能证明APBC的条件是(  )

A. APPBAPPC

B. APPBBCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·泰安模拟)如图,在正四棱柱ABCDA1B1C1D1中,EAD的中点,FB1C1的中点.

(1)求证:A1F∥平面ECC1

(2)在CD上是否存在一点G,使BG⊥平面ECC1?若存在,请确定点G的位置,并证明你的结论,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某大学社团为调查大学生对于“中华诗词”的喜好,在该校随机抽取了40名学生,记录他们每天学习“中华诗词”的时间并整理得到如下频率分布直方图:

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :

学习时间

(分钟/天)

等级

一般

爱好

痴迷

()的值

(Ⅱ) 从该大学的学生中随机选出一人,试估计其“爱好”中华诗词的概率

(Ⅲ) 假设同组中的每个数据用该组区间的右端点值代替,试估计样本中40名学生每人每天学习“中华诗词”的时间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,圆的极坐标方程为: .若以极点为原点,极轴所在直线为轴建立平面直角坐标系.

(Ⅰ)求圆的参数方程;

(Ⅱ)在直角坐标系中,点是圆上动点,试求的最大值,并求出此时点的直角坐标.

查看答案和解析>>

同步练习册答案